
Optimizing Secure Communication Standards for

Disadvantaged Networks∗

Stephen Okano, Roger Khazan, Joseph Cooley, Benjamin Fuller
Information Systems Technology Group

MIT Lincoln Laboratory
244 Wood Street, Lexington, MA 02420
email: {rkh, cooley, bfuller}@ll.mit.edu

August 31, 2009

Abstract We present methods for optimizing standardized cryptographic
message protocols for use on disadvantaged network links. We first provide an
assessment of current secure communication message packing standards and
their relevance to disadvantaged networks. Then we offer methods to reduce

message overhead in packing Cryptographic Message Syntax (CMS) structures
by using ZLIB compression and using a Lite version of CMS. Finally, we offer
a few extensions to the Extensible Messaging and Presence Protocol (XMPP)

to wrap secure group messages for chat on disadvantaged networks and to
reduce XMPP message overhead in secure group transmissions. We present
the design and implementation of these optimizations and the results that

these optimizations have on message overhead, extensibility, and usability of
both CMS and XMPP. We have developed these methods to extend CMS and

XMPP with the ultimate goal of establishing standards for securing
communications in disadvantaged networks.

The project report presented here is the MIT Master’s of Engineering thesis
document by Stephen Hiroshi Okano. Stephen Okano’s Master’s project and
the thesis document were done under the supervision of Dr. Roger Khazan and
Mr. Joseph Cooley and in collaboration with them and Mr. Benjamin Fuller.

∗This work is sponsored by the Department of Defense under Air Force contract FA8721-
05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the
authors and are not necessarily endorsed by the United States Government.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 AUG 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Optimizing Secure Communication Standards for Disadvantaged
Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood
Street,Lexington,MA,02420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

141

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Optimizing Secure Communication Standards for

Disadvantaged Networks
by

Stephen Hiroshi Okano
B.S., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering
and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

at the

Massachusetts Institute of Technology

September 2009

c©2009 Massachusetts Institute of Technology.
All rights reserved.

Author .
Department of Electrical Engineering

and Computer Science
September 1, 2009

Certified by. .
Dr. Roger Khazan
Research Scientist

MIT Lincoln Laboratory
Thesis Supervisor

Certified by. .
Joseph Cooley

Research Scientist
MIT Lincoln Laboratory

Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Optimizing Secure Communication Standards for

Disadvantaged Networks

by

Stephen Hiroshi Okano

Submitted to the Department of Electrical Engineering
and Computer Science

September 1, 2009,
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

We present methods for optimizing standardized cryptographic message protocols for
use on disadvantaged network links. We first provide an assessment of current secure
communication message packing standards and their relevance to disadvantaged net-
works. Then we offer methods to reduce message overhead in packing Cryptographic
Message Syntax (CMS) structures by using ZLIB compression and using a Lite version
of CMS. Finally, we offer a few extensions to the Extensible Messaging and Presence
Protocol (XMPP) to wrap secure group messages for chat on disadvantaged networks
and to reduce XMPP message overhead in secure group transmissions. We present
the design and implementation of these optimizations and the results that these op-
timizations have on message overhead, extensibility, and usability of both CMS and
XMPP. We have developed these methods to extend CMS and XMPP with the ul-
timate goal of establishing standards for securing communications in disadvantaged
networks.

Thesis Supervisor: Dr. Roger Khazan
Title: Research Scientist
MIT Lincoln Laboratory

Thesis Supervisor: Joseph Cooley
Title: Research Scientist
MIT Lincoln Laboratory

3

4

Acknowledgments

I would like to thank Dr. Roger Khazan for leading me through this thesis. Without

his help and guidance I surely would have been lost. I would also like to thank Joe

Cooley for his help in all coding aspects and in setting up everything I needed to do

work. I learned a great deal from him about Linux, coding, and how fast a Kimball’s

special can be eaten. I also would like to thank Ben Fuller for helping me with the

ASE library and with many other code and conceptual problems. I would also like to

thank Roger, Joe, and Ben for taking the time to help revise this thesis.

5

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Thesis Overview . 18

1.2.1 Roadmap . 19

2 Standards Options 21

2.1 IETF . 22

2.1.1 Area of Expertise . 22

2.1.2 Process to Create Standards 23

2.2 OASIS . 23

2.2.1 Area of Expertise . 23

2.2.2 Process to Create Standards 24

2.3 NIST . 24

2.3.1 Area of Expertise . 24

2.3.2 Process to Create Standards 24

2.4 Related Work . 25

2.4.1 Key Management . 25

2.4.2 Enterprise Key Management Infrastructure 25

2.4.3 Guidelines for Cryptographic Key Management 25

2.5 Recent Operational Standards . 26

2.5.1 S/MIME Encryption . 26

2.5.2 CMS Message Formatting . 26

2.5.3 Web Services Security (WS-Security) 27

7

2.6 The Choice... and Why . 27

3 Cryptographic Message Syntax 29

3.1 Purpose and History . 29

3.2 Usage . 30

3.3 Message Structures . 31

3.3.1 Encapsulation . 33

3.3.2 Used Content Types . 33

3.3.3 Enveloped Messages . 34

3.3.4 Signed Messages . 34

3.4 CMS Usage in Disadvantaged Networks 35

4 Optimizing CMS for Disadvantaged Networks 37

4.1 Methods of Evaluation . 38

4.2 Sources of Overhead in CMS . 38

4.2.1 Specification of Algorithms 41

4.2.2 Content Encryption Keys . 41

4.2.3 Formatting and Encoding . 42

4.2.4 Optional Data . 42

4.2.5 Potential Solutions . 43

4.3 Requirements . 43

4.4 General Purpose Compression to Reduce Overhead: ZLIB 44

4.4.1 ZLIB Overview . 44

4.4.2 Optimal Conditions: Reliable TCP with Repeated CMS Struc-

tures . 47

4.4.3 Worst Case Conditions: Disadvantaged Networks 47

4.4.4 Priming the Pump:

Generating a CMS ZLIB Dictionary 48

4.5 Content-Aware Compression to Reduce Overhead: CMS Lite 52

4.5.1 CMS Lite Design . 53

4.5.2 Encode and Decode . 53

8

4.5.3 CMS Lite Transformations 54

4.5.4 Using CMS Lite . 61

4.5.5 Table Lookups . 62

4.6 CMS Lite and ZLIB . 63

4.7 Summary . 63

5 Implementation of Techniques 67

5.1 Technologies Used . 67

5.1.1 Tools and Environment . 68

5.1.2 Libraries and APIs . 68

5.2 Compression Implementation . 69

5.2.1 Strategy . 70

5.2.2 Extending ZLIB BIO . 72

5.2.3 Extending the CMS CompressedData Type 74

5.2.4 Creating a Dictionary . 77

5.3 CMS Lite . 79

5.3.1 Requirements . 79

5.3.2 Adding ASN.1 Types for the CMS API 80

5.3.3 Encoding and Decoding . 82

5.3.4 Summary of CMS Lite . 92

6 Evaluation 93

6.1 Testing Infrastructure . 93

6.2 Test Methodology . 94

6.3 Results . 95

6.3.1 Dictionary Comparisons . 95

6.3.2 CMS Lite Comparsion . 96

6.3.3 Total Results . 98

6.4 Discussion . 99

6.4.1 ZLIB with Dictionary Compression 99

6.4.2 CMS Lite . 101

9

6.4.3 Wrap Up . 103

6.5 Conclusion . 103

7 Extensible Messaging and Presence Protocol (XMPP) Optimiza-

tions for Disadvantaged Networks 105

7.1 Motivation . 106

7.2 XMPP Background . 107

7.3 XMPP Extensions . 107

7.3.1 Secure Group Messages Requirements 108

7.3.2 Secure Group Protocol . 110

7.3.3 Subset Addressing . 114

7.4 Implementation . 117

7.4.1 Platform . 117

7.4.2 Group Secure Message Plugins 118

7.4.3 Subset Implementation . 122

7.5 Evaluation and Conclusions . 126

8 Conclusions 129

8.1 What I Learned . 129

A CMS ASN.1 Library Listing 131

B CMS Optimizations Data 135

10

List of Figures

3-1 A CMS message: the content type defines the structure of the rest of

the message . 31

3-2 EnvelopedData structure laid out in memory. 34

3-3 SignedData structure laid out in memory. 34

4-1 EnvelopedData with AES-256-cbc CEKs and 2048 bit RSA encryption

keys with differing payloads . 39

4-2 EnvelopedData overhead without payloads included 40

4-3 ZLIB compression With a preplaced dictionary 49

4-4 Composition of a CMS dictionary . 50

4-5 Compressing a CMS structure with a ZLIB dictionary 51

4-6 Decompressing a CMS structure with ZLIB 52

4-7 CMS Lite encode/decode . 54

4-8 Encoding encapsulated CMS Lite structures 62

5-1 Compression in OpenSSL with ZLIB BIO structures 71

6-1 ZLIB compression comparing dictionaries 96

6-2 Overhead comparison after compression w/dictionaries 97

6-3 Overhead percentage compression w/dictionaries 98

6-4 CMS Lite optimizations . 99

6-5 CMS Lite overhead size . 100

6-6 All optimizations compared to best and worst case conditions 101

6-7 All optimizations overhead sizes . 102

11

7-1 XMPP group secure message sending process 111

7-2 Message savings due to subset addressing 117

7-3 Detailing the implementation of the ge2e element in Pidgin 121

7-4 Subset message creation and routing on XMPP client and server . . . 126

12

List of Tables

4.1 EnvelopedData and SignedData message breakdown 40

4.2 Core ZLIB API pertinent functions 46

4.3 Tested dictionary compositions . 51

4.4 CMS Lite parameter lookup table . 64

4.5 Variables in each CMS Structure which are replaced by parameters . 65

5.1 Strings included in condensed CMS dictionary 77

5.2 OpenSSL ASN.1 library functions . 81

6.1 Functions used to create CMS messages 95

6.2 CMS Lite overhead compression percentage 97

6.3 Evaluating ZLIB compression w/dictionary and CMS Lite 103

B.1 Summary results of all optimizations on CMS 135

B.2 Dictionary ZLIB compression results 135

B.3 Dictionary ZLIB overhead compression results 136

B.4 CMS Lite optimization results . 136

B.5 CMS Lite overhead optimization results 136

13

14

Listings

4.1 CMS Lite . 54

4.2 Normal EnvelopedData . 55

4.3 Reduced EnvelopedData . 56

4.4 Normal SignedData . 57

4.5 Reduced SignedData . 58

4.6 Normal DigestedData . 58

4.7 Reduced DigestedData . 58

4.8 Normal EncryptedData . 59

4.9 Reduced EncryptedData . 59

4.10 Normal CompressedData . 59

4.11 Reduced CompressedData . 60

4.12 Normal AuthenticatedData . 60

4.13 Reduced AuthenticatedData . 61

5.1 Creating compressed data . 70

5.2 BIO setDictionary: allocates memory for a dictionary in the ZLIB BIO

and stores the dictionary size . 72

5.3 ZLIB inflateSetDictionary . 73

5.4 CMS compress dict . 74

5.5 CMS uncompress dict . 75

5.6 CMS LiteData . 82

5.7 Encoding SignedData . 83

5.8 Encoding SignedData continued . 84

5.9 Decoding Signed params . 86

15

5.10 Decode Signed params continued . 87

5.11 Encoding EnvelopedData . 89

5.12 Encoding EnvelopedData continued 90

7.1 Sending a secure group message to a XMPP chatroom 112

7.2 Test chatroom subset message from Alice 115

7.3 Resulting message sent to chatroom 115

7.4 Alice excluding Dave . 116

7.5 Definition of the XMPP ge2e signal 118

7.6 Encryption signal handler . 119

7.7 XMPP Protocol emitting the signal to use group secure communications120

7.8 Registering a command for subsets in XMPP 122

7.9 Subset command handler in XMPP 122

7.10 Subset message packet handling on the Openfire server 123

7.11 Processing subset messages on Openfire 124

A.1 CMS LiteData . 131

A.2 CMS Signed params : SignedData 132

A.3 CMS Enveloped params : EnvelopedData 133

A.4 EnvelopedData continued... 134

A.5 CMS Digested params : DigestedData 134

A.6 CMS Compressed params : CompressedData 134

A.7 CMS Encrypted params : EncryptedData 134

16

Chapter 1

Introduction

1.1 Motivation

The Internet Engineering Task Force (IETF) and other standards organizations have

recently defined standards for cryptographic message formats to be used for securing

communications in computer networks [8]. These standards focus on addressing in-

teroperability and extensibility issues; they have predominantly been driven by the

needs of terrestrial networks. Little or no consideration has been given to mobile,

wireless networks, whose links maybe constrained in their communication capacities

and connectivity.

At the same time, the use and importance of mobile, wireless networks has been

growing due to smartphones, mobile devices capable of ad-hoc networking, and the

general trend of networking on-the-go.

In the national defense sector, the Department of Defense is pursuing a trans-

formational vision, called Network-Centric Operations (NCO) [8]. The tenets of the

NCO vision express the idea that a robustly inter-networked force improves infor-

mation sharing and collaboration, which ultimately lead to a dramatic increase in

mission effectiveness. Much of forward deployed force will be connected via mobile,

wireless networks, which in the defense sector are known as tactical networks. Tacti-

cal networks are also known as disadvantaged networks because they are often made

up of communication links that are low-bandwidth, high-latency, and intermittent.

17

This thesis is motivated by these two trends and considers the problem of using

and adapting standard cryptographic message formats for the use in disadvantaged

networks. In addition, this thesis is contributing to a specific effort at MIT Lin-

coln Laboratory. This effort, called Dynamic Group Keying (DGK), is developing

solutions for securing communication and applications in tactical networks, and in

particular, group-oriented applications, such as those that involve information sharing

and collaboration. The ultimate goal of DGK is to standardize its solutions for the use

in tactical networks and, outside the defense sector, in general mobile, wireless net-

works. A step towards this goal is to define solutions proposed by DGK atop existing

and accepted standards, and in particular, atop accepted standards for cryptographic

messages. But in order to maintain relevance to tactical, disadvantaged networks,

the underlying standards need to be optimized for the use on such networks.

1.2 Thesis Overview

Therefore, in this thesis, we investigate methods for optimizing and implementing

standardized cryptographic message formats for use in disadvantaged networks. We

first provide an assessment of the current standards and their relevance to disad-

vantaged networks. Then, we offer methods to reduce message overhead in packing

Cryptographic Message Syntax (CMS) [35] structures by using ZLIB compression

and investigate a possibility of creating a Lite version of CMS. Finally, we offer a few

extensions to the Extensible Messaging and Presence Protocol (XMPP) [52]: one –

to secure group chat messages on disadvantaged networks, and the other – to reduce

XMPP message overhead in secure group transmissions.

We present the design, implementation, and results that these optimizations have

on message overhead, extensibility, and usability of both CMS and XMPP. We have

developed these optimizations to extend CMS and XMPP to support the ultimate

goal of eventually establishing a standard for the use of these optimizations in disad-

vantaged networks.

18

1.2.1 Roadmap

This thesis is separated into two distinct parts. The first part deals with finding

a standard for cryptographic message packing and with the optimizations to that

standard for disadvantaged networks. The second part is a self-contained section that

deals with applications of secure group communications. It describes an extension and

optimization to XMPP in order to support secure group messages.

In Chapter 2, we begin with the standards organizations and evaluate the stan-

dards currently used for cryptographic message packaging. As the result, we choose

to focus on Cryptographic Message Syntax (CMS) [35] as the target of our optimiza-

tions for its use in disadvantaged networks. Consequently, in Chapter 3, we overview

CMS and its advantages and disadvantages. Chapter 4 describes the design of two

optimizations to reduce CMS messages size: ZLIB compression and a CMS Lite ap-

proach. Chapter 5 covers the implementation of these optimizations in OpenSSL [13],

and Chapter 6 offers an evaluation of these two optimizations against each other.

As mentioned above, Chapter 7 is a self-contained description of the design and

implementation of a group end-to-end encryption protocol extension to enable secure

group communications in XMPP. It also includes the design and implementation of

subset addressing, an optimization to XMPP group chat protocol. These extensions

constitute another example of optimizing a message packaging standard for secure

group communications.

Chapter 8 concludes the thesis and details further work.

19

20

Chapter 2

Standards Options

In the Introduction we discussed our motivation for this project and gave an overview

of the thesis. We discussed our desire to use standardized communications for secure

group communications in disadvantaged networks. However, we must understand

what standards are relevant to secure group communications before we choose one

and optimize it for disadvantaged networks.

In order to understand which standardized messaging protocol is right for us, we

must learn which organizations currently standardize internet protocols and security

mechanisms. There are several major players in the development of computer security

standards.

• The National Security Agency creates guidance for the government on informa-

tion assurance and has several security standards profiles which it recommends

for interoperability among government assets.

• RSA Security defined and maintains the packaging and API for wrapping pub-

lic key certificates and associated data necessary for asymmetric encryption,

called Public Key Cryptography Standards (PKCS) [39]. For security mech-

anisms that use Public Key Cryptography, this standard defines how PKCS

implementations interoperate with one another.

• The Institute of Electrical and Electronics Engineers (IEEE) specializes in devel-

oping industry-wide standards. Wireless networking and networking standards

21

were all developed by IEEE. In relation to key management, IEEE Group 1619.3

focuses on key management issues.

While these three organizations all publish standards, for this project we focus on

the following organizations:

• the Internet Engineering Task Force (IETF),

• the Organization for Advancement of Structured Information Standards (OA-

SIS),

• the National Institute of Standards and Technology (NIST).

These three organizations have been involved in the creation of Internet standards

related to communications and security and have open collaboration in creating new

standards. Both of these qualities make them attractive to our project.

2.1 IETF

2.1.1 Area of Expertise

The IETF accepts Requests for Comments (RFCs) which specify how to perform

tasks on the Internet and which promote the operation of the Internet. Usually these

standards are a best common practice. These standards are subject to update when-

ever a better way of performing the same task has been identified. Some important

RFCs which have been developed by the IETF are the Simple Mail Transport Protocol

(SMTP) to send e-mail [41], the Hypertext Transfer Protocol (HTTP) [31] providing

how to load and view web-pages, the Security Architecture for IP (IPSec) tunneling

protocol, which enables security mechanisms for Internet traffic at the IP level [40],

and Transport Layer Security (TLS), which provides privacy and data integrity over a

transport protocol, traditionally HTTP [30]. An RFC that relates to our project is the

specification for Secure Multipurpose Internet Mail Extensions (S/MIME) [47], which

describes how to use public key encryption and signing of mail-formatted messages.

22

Another is the Cryptographic Message Syntax described in RFC 3852 [35]. It defines

how to package cryptographically protected messages and is specified to be used in

S/MIME encryption. The NSA has been known to adopt technology standardized by

the IETF.

2.1.2 Process to Create Standards

A proposed standard must go through several states in order to become a full stan-

dard in the IETF [26]. First, the specification must be stable and contain no omis-

sions. An implementation of the specification is generally desired in order to test the

specification. This state is called a proposed standard. When separate interoperable

implementations with different code bases have been created for a proposed standard,

and there has been some operational use of the standards, then the standard may

advance to draft status. A working group in the IETF reviews the draft standard

and it may become a full standard when it is accepted as beneficial to the Internet

by the general community. An experimental standard may be submitted to the IETF

in relation to research efforts [27]. These may be changed into proposed standards if

they are seen as beneficial and stable by the RFC Editor.

2.2 OASIS

2.2.1 Area of Expertise

The OASIS organization is a collection of companies and organizations that develops

open standards for global information needs. The organization focuses on web secu-

rity and e-business standards. Most of their standards are based on the eXtensible

Markup Language (XML). A couple of the relevant standards created by OASIS are

the Web Services Security Specification (WS-Security), which is a means to apply

public key security to Simple Object Access Protocol (SOAP) messages [23] and the

standard for Security Assertion Markup Language (SAML) [50], which specifies how

to send encryption and security related information in an XML stream. Many of the

23

technologies standardized by OASIS, including WS-Security, underlie and are used in

the Department of Defenses Network Centric Enterprise Services.

2.2.2 Process to Create Standards

A new standard must be submitted to a technical committee in order to be consid-

ered for standardization. Technical Committees consist of members from industry.

Technical Committees edit the submission to produce a standard draft and submit

it to a public review. If over half of the present Technical Committee members vote

for the standard, the standard becomes a Committee Specification. Then all OASIS

members comment and then vote on the standard and require greater than a 2/3 vote

for the specification and less than 1/4 vote against it in order for the specification to

become an OASIS Standard.

2.3 NIST

2.3.1 Area of Expertise

The National Institute of Standards and Technology develops many standards in

many different disciplines of engineering. In computer security, NIST standardized

the Data Encryption Standard algorithm in the 1970s and the Advanced Encryption

Standard algorithm in 2002 used to encrypt and decrypt data from shared symmetric

keys. NIST has not specified any new cryptographic message packing standards lately,

instead relying on organizations like the IETF, OASIS, and IEEE to develop them.

2.3.2 Process to Create Standards

Standards are submitted to NIST and are approved in publications called Federal

Information Processing Standards (FIPS) publications. NIST requests papers when

a standard is needed and reviews all submissions before selecting one to make a

standard.

24

2.4 Related Work

There has been a lot of work done in creating standards used for the storage and

transport of cryptographic information. They build upon previous specifications for

WS-Security, encryption information packaging schemes, like S/MIME encryption,

and cryptographic information messaging standards like the Cryptographic Message

Syntax (CMS) [47][35].

2.4.1 Key Management

Key management lately has become an important issue given the number of dis-

parate applications and devices. In order to protect the data in these applications

and devices from malicious users, encryption and data signing are necessary. To

accomplish this goal, standard ways of managing keys across applications and plat-

form are needed [33]. Several efforts are being made by the standards organizations

mentioned earlier to accomplish this goal.

2.4.2 Enterprise Key Management Infrastructure

OASIS has created the Enterprise Key Management Infrastructure Technical Commit-

tee in response to the need for standardized key management. The EKMI Technical

Committee is involved in developing a Symmetric Key Services Markup Language for

key transport. These specifications use XML to provide a standardized mechanism

for symmetric key transport.

2.4.3 Guidelines for Cryptographic Key Management

In response to the need for key management, the IETF published RFC 4107 [25].

The specification guidelines on when automated key management should be used and

when it is sufficient to manually manage the keys needed in encryption. According

to the specification, automated key management should be used when the number

of keys needed is n2 where n is the number of users, or if using a symmetric stream

25

cipher, similar initialization vectors, sending large amounts of data in a short time,

or using a key needed by more than two parties. Thus, according to RFC 4107,

automated key management is important to support in any cryptographic message

packing standard.

2.5 Recent Operational Standards

We now look at the current security standards defined by the organizations men-

tioned above. The following standards have been created to transport and package

cryptographic messages: The S/MIME Encryption Standard, Cryptographic Message

Syntax, and Web Services Security standard.

2.5.1 S/MIME Encryption

S/MIME encryption was developed as a way of protecting Multipurpose Internet

Mail Extensions (MIME) data with the PKCS 7 secure message format [39]. MIME

data format was specified by the IETF and used generally for e-mail messages. The

PKCS 7 algorithm and packaging format was generated by RSA Data Security. The

specification was changed to use the CMS format, which is very similar to PKCS

7. The S/MIME specification details how to package MIME-type data and specifies

how to encrypt and decrypt these packaged messages. S/MIME messages can be

encrypted to multiple recipients using their public keys, providing a way to securely

share data with a group of participants [39].

2.5.2 CMS Message Formatting

The Cryptographic Message Syntax (CMS) is similar to PKCS 7 as described above

and is used to digitally sign, digest, authenticate and/or encrypt arbitrary message

data [35]. Data in an S/MIME message is formatted according to CMS. The CMS

RFC 3852 defines data structures which hold information on keys and the encapsu-

lated data along with digests and other properties needed to implement public key

26

encryption and digital signing and message digests. It may be possible to extend

CMS to encapsulate the types of secure group communications being developed at

MIT Lincoln Laboratories. Cryptlib [1] and OpenSSL [13] are examples of the soft-

ware libraries that implement a subset of CMS.

2.5.3 Web Services Security (WS-Security)

WS-Security standards also define a method to send authentication data needed for

public key cryptography [16]. The difference between the CMS format and Web

service security format is that CMS defines a format which can be laid out bitwise

on a transfer medium. CMS messages also can be encoded in several formats for

transfer. In contrast, WS-Security specifies how to secure Simple Object Access

Protocol (SOAP) [23] messages in XML. An XML security token format inside a

SOAP message defines the authentication information stored within a secured SOAP

message. The XML encoding therefore must be used by WS-Security. WSS4J [17]

coded by the Apache project [11] is an open-source implementation of WS-Security.

SOAP messages using WS-Security could also become the message packaging standard

for secure group communications in disadvantaged networks.

2.6 The Choice... and Why

We chose the Cryptographic Message Syntax as the standard on which to focus to

develop optimizations for disadvantaged networks. We chose this message standard

for several reasons:

• CMS is widely used in the security community. There are many different exten-

sions to CMS, and it supports a wide variety of algorithms and configurations.

• CMS is used in the most commonly used group security protocol, S/MIME [47].

• CMS is also more compact than WS-Security in its native form, which uses

base-64 encoded structures and human-readable XML elements, while CMS

27

uses ASN.1 structures which can be encoded in many ways, to reduce message

size.

• CMS has almost become the de-facto basis for sending cryptographic messages

in IETF. Applications such as certificate management already use CMS [53].

• OpenSSL, which is used in related work at Lincoln Laboratories, has backported

support for CMS.

• CMS has a diverse RFC author distribution, with around 30 contributors and

over 30 related RFCs.

We next describe CMS in much greater detail and then we show our design for

optimizing CMS for disadvantaged networks.

28

Chapter 3

Cryptographic Message Syntax

In the previous chapter we selected Cryptographic Message Syntax as a message

syntax standard on which to focus our optimizations for disadvantaged networks and

offered our reasoning behind that choice. In this chapter we describe CMS in greater

detail. First we discuss the original purpose of CMS and its history and current

usage. We also examine some of the message structures and types in CMS and their

use in securing and authenticating data. Finally, we describe the advantages and

disadvantages that CMS presents in the context of disadvantaged networks.

3.1 Purpose and History

CMS is defined in the IETF RFC 3852 [35]. CMS grew out of another standard

developed by RSA Laboratories, called PKCS 7 version 1.5 [39], for packaging cryp-

tographic data being sent over electronic mail. The PKCS 7 syntax was made to be

easily convertible into Privacy-Enhanced Mail (PEM) [42]. The PKCS 7 syntax was

adopted, developed, and maintained by the IETF after its initial development. CMS

was developed to encapsulate and protect data transferred over the Internet. The

syntax can support digital signatures, digests, key transport, and encrypted message

content. The structures and values in CMS are generated using ASN.1 with basic en-

coding rules and are typically represented as octet-strings [21]. Since its creation, in

RFC 3369, CMS was modified to add mechanisms to support more key management

29

schemes and separate the cryptographic algorithms used by the message structure

from the makeup of the structure itself [34]. CMS was then later extended by RFC

3852 to support different certificate formats and revocation list formats [35].

3.2 Usage

We now consider the applications of CMS. CMS has become the IETF de-facto stan-

dard for cryptographic material transmission, so many related cryptographic protocols

generated by the IETF use CMS. The typical usage for CMS has been in S/MIME

secure e-mail messaging [47]. This technology provides authentication, message in-

tegrity checking, non-repudiation, privacy, and data security to any MIME data [32],

and is not limited to just e-mail messages. It can protect MIME encoded data sent

via HTTP [31] or other protocols. In S/MIME, enveloped CMS messages are created

to provide data security and privacy functions, while signed and authenticated CMS

structures are used to provide integrity, non-repudiation, and authentication. Due to

the flexibility of CMS, new algorithms for key management, key wrapping, signing,

and encrypting data in CMS are easily supported without requiring changes to the

base CMS structure.

We have already seen several follow-on RFCs which relate to CMS. RFC 2797

[43] established a method of passing Public Key Infrastructure (PKI) [46] information

through the use of CMS messages. The protocol describes an interface to exchange

certificates. Requests for certificates are first made using PKCS 10 objects. Then,

responses to requests for certificates are created using signed CMS structures. This

protocol is then later updated in RFC 5272 through 5275. In RFC 5272, PKI requests

and responses are both wrapped in CMS structures [54]. RFC 5273 provides file

extensions which correspond to PKI requests and responses and methods to use PKI

requests and responses encapsulated in MIME data, HTTP/HTTPS [31] protocol

data, and TCP-based data [55]. RFC 5274 deals with terminology [53] and RFC 5275

describes a symmetric key management protocol and architecture. The symmetric

key management protocol is created using PKI Requests/Responses encapsulated by

30

CMS enveloped or signed structures [56]. RFC 4108 describes the use of CMS to

protect firmware packages in transmission [36].

As the reader may see, CMS is quickly evolving and growing to enable cryptog-

raphy on the Internet. The open source cryptography library, OpenSSL has even

included CMS into its message packaging [13]. Also, it is fairly easy to incorporate

new algorithms into CMS, potentially including those used by Lincoln Laboratory’s

secure group communications project. This makes CMS an appropriate standard to

focus on in developing optimizations for disadvantaged networks.

3.3 Message Structures

Having described the different applications of CMS, we now consider the content and

syntax of CMS messages. The structure of CMS is fairly simple, but looks drastically

different depending on the type of message.

Figure 3-1: A CMS message: the content type defines the structure of the rest of the
message

31

The top level element in every CMS message is the ContentInfo element, which

simply contains the version number of the CMS structure followed by an object which

defines the content type of the structure. This content type defines the data as a CMS

structure and informs anyone processing the data what to expect next. All elements

in the CMS structure are defined as ASN.1 objects and thus can be encoded/decoded

just like any other ASN.1 objects [35]. Figure 3-1 shows the top level structure.

There are several different content types available in CMS:

SignedData, EnvelopedData, DigestedData, EncryptedData, AuthenticatedData,

Data, and CompressedData. More content types can be added to CMS by writing

a new RFC to update CMS. In general, the content types all permit an entity to

process the content in a single pass using Basic Encoding Rules (BER) [21].

SignedData takes arbitrary encapsulated content and applies an arbitrary num-

ber of signers to the content. Usually SignedData transmits digital signatures or

PKI information that needs to be transmitted with integrity and authentication [46].

EnvelopedData content encrypts the content of the package with a content encryption

key (CEK). This key is then wrapped via a specified algorithm to any number of re-

cipients. This data type is typically used to digitally envelope data in schemes such as

S/MIME [47]. The DigestedData type simply consists of any type of content which

includes a message integrity digest calculated with a specified algorithm. The digest

is computed only on the content of the structure and a recipient can verify the content

by independently calculating a digest with the same algorithm on the same content

that the message contains. EncryptedData is similar to enveloped data except there

is no CEK included in the package. Key management with EncryptedData packages

must be done through some other means. AuthenticatedData encrypts a message

authentication key to any number of recipients, which is used to verify a message

authentication code made from the content of the package as well as any other at-

tributes that the user chooses to authenticate. Finally, Data content in CMS usually

encapsulates arbitrary data being sent over the wire and itself is usually encapsulated

by other CMS content types.

32

3.3.1 Encapsulation

One of the main concepts in CMS is encapsulation. An unlimited number of types of

structures can be made by creating one type of CMS structure and then encapsulating

it in another. For example, let’s say that you wanted to take a text file and sign, then

encrypt it in CMS for transmission to another entity. First, the text file would be

described by Data content, which is essentially an octet-stream. This data content

would then be encapsulated in a SignedData structure where the signature would

verify the ASCII text encoded in the octet-stream. Finally, the whole SignedData

structure would be encapsulated in an EnvelopedData structure, which would have

CEKs for all recipients of the data. Encapsulation allows data to have multiple

attributes and many cryptographic operations completed on the same piece of data

in large nested CMS structure. Applications can process CMS structures until they

reach a point where they do not have the necessary permissions to view further, and

chains of signatures or encrypted packages can be created to ensure confidentiality of

a message or authentication by multiple entities. The structure therefore, integrates

very well into PKI.

3.3.2 Used Content Types

The main content types in CMS are the EnvelopedData content type and SignedData

content type. EnvelopedData can be used for encrypting information while includ-

ing in the same package the content encryption key needed to decrypt the message.

This content encryption key can be encrypted to multiple recipients via several key

management schemes. This makes EnvelopedData a flexible structure for encryption.

SignedData is used for date authentication. Also, as discussed in 3.2, PKI requests

and responses use SignedData packages in order to authenticate certificates and other

PKI information. Let’s look in more detail at these two structures.

33

Figure 3-2: EnvelopedData structure laid out in memory.

3.3.3 Enveloped Messages

EnvelopedData contains encrypted content, optional certificates or certificate revo-

cation lists, and unprotected attributes attached to the structure on the top level.

All key management is done in the RecipientInfo set of data elements. There is one

RecipientInfo for every entity the message is encrypted to. Each contains the key

which encrypts the message content, which itself is encrypted according to a specified

key management scheme.

3.3.4 Signed Messages

Figure 3-3: SignedData structure laid out in memory.

34

SignedData at the top level contains the encapsulated content, attributes, a list

of digest algorithms used by the structure, and optional certificates or revocation

lists. All the signatures are contained in SignerInfo elements. One SignerInfo

is created for each signature added to the structure. These elements also contain

optional signed attributes as well as specifiers for the digest and signature algorithms

used in the signature.

3.4 CMS Usage in Disadvantaged Networks

CMS can be used in disadvantaged networks to package secure communications. The

EnvelopedData structure could be used to encrypt messages to groups of entities while

the SignedData structure could be used to send authenticated information over the

networks. CMS has an advantage in in that it is generic and descriptive. These char-

acteristics allow it to support many different types of algorithms and content types.

New algorithms are supported easily using the CMS syntax, making it extensible.

This is an advantage since new encryption algorithms may need to be developed for

use on disadvantaged networks. Also, since CMS requires no specific transfer method

or lower level details, it is interoperable. However, a disadvantage with CMS is that

these structures can add a significant amount of message size overhead. In this thesis

we investigate and propose methods for how to reduce this overhead.

35

36

Chapter 4

Optimizing CMS for

Disadvantaged Networks

In the previous chapter we examined Cryptographic Message Syntax in detail, focus-

ing on a couple of message structures within the syntax, the EnvelopedData type

and the SignedData type. These message types can be considered the main ones

in CMS and they are useful in packaging group secure information in the Lincoln

Laboratory Dynamic Group Keying project. However, there are significant problems

toward adopting CMS as the standard for packaging group data in disadvantaged

networks. First, CMS must have a method for supporting the algorithms which are

used in disadvantaged networks. Second, CMS must not introduce too much overhead

data into each message. This is because a disadvantaged network can not reliably

send large quantities of data quickly. Bandwidth, latency, and connectivity may all

be limited in a disadvantaged network.

In this chapter, we present strategies for eliminating overhead when sending CMS-

packaged data. We first determine our methods of evaluating CMS and any optimiza-

tions we develop. Then we look into the sources of overhead in CMS. Finally we delve

into the potential methods of reducing this overhead and explain the advantages and

disadvantages of each method.

37

4.1 Methods of Evaluation

There are several ways of evaluating the efficiency of a cryptographic message packing

method. Two of the different methods are listed below:

• Computations: Estimates the number of computations that the processor

would have to make in order to create the message.

• Message Size: Evaluates the overall efficiency of a structure based on the

amount of data that is sent from entity to entity.

We chose to evaluate the efficiency of Cryptographic Message Syntax based on the

message size of the syntax. We assume that the computation power needed to encrypt,

decrypt, sign, and create mesages would cause delays far less than the delays caused

by the latency and bandwidth of the disadvantaged networks that send that data.

This is because our environment may include links with less than 4096 bits/sec, while

the links may connect computers that have 2 or more cores operating at greater than

2GHz. Also, the power required for communications is generally greater than that

required for computations. Thus, processor cycles can be relatively free compared to

bandwidth on the network.

4.2 Sources of Overhead in CMS

This section details the sources of overhead in the CMS structure. The documentation

for CMS shows how the structure is laid out, but does not tell us much about how

large each structure is. These questions can be answered through some testing. We

ran a few initial tests on simple CMS structures with varying byte payloads which

showed where the sources of overhead were. Figure 4-1 shows the sizes of sample

EnvelopedData and SignedData structures as they would appear in transmission

between two entities. Figure 4-2 then shows the CMS overhead data in each of these

messages.

There are several options available to create an EnvelopedData package. In

OpenSSL, CMS structures can pack data using either binary data or text format.

38

Figure 4-1: EnvelopedData with AES-256-cbc CEKs and 2048 bit RSA encryption
keys with differing payloads

They also can have many different types of encryption and include attributes that

are signed, encrypted, or unmodified. Certificates and CRLs can be added to the

structure as well. For our purposes, we use binary data since CMS by default does

not package data in text format. As a default, in our test EnvelopedData we encrypt

a message with 1 byte of payload to one user. We use a CEK which is encrypted to

each user with RSA Encryption [49] using X.509 certificates [37] and 2048 bit keys.

The CEK encrypts the packaged data with an AES 256-bit cipher [44].

Our SignedData packages have 1 signer using an RSA X.509 certificate to digitally

sign the encapsulated data. The package has a 1 byte payload of binary data again

with no signed attributes or S/MIME Capabilities and no certificates attached so we

can look at the bare minimum SignedData package.

As you can see in 4-1, for only 1 byte of payload, there is a considerable amount of

overhead, 450 bytes of CMS-related data. However, as the size of the data increases,

the overhead related to the CMS structure stays the same, which results in a linear

increase in CMS package size with a linear increase in payload size. The CMS overhead

remains fixed no matter the payload. This makes sense since the package does not

39

Figure 4-2: EnvelopedData overhead without payloads included

depend on the data included in the package.

In Table 4.1 we show the size breakdown for each CMS component.

EnvelopedData SignedData

version 2 version 2
contentType 6 contentType 6
recipientInfo 377 signerInfo 375
encryptedContentInfo 73 encapContentInfo 18

algorithms 9

Table 4.1: EnvelopedData and SignedData message breakdown

We can see that most of the overhead in the CMS package comes from the

RecipientInfo structure and the EncryptedContentInfo structure. In the SignedData

structure, most of the CMS-related overhead is in the SignerInfo package. The

RecipientInfo and SignerInfo structures are largest because they contain the vari-

able CEK and signature. The signature algorithms and content specifiers are fixed

data structures and are relatively small. We also show the size breakdown for each

40

structure when we eliminate the data accounted for by the CEK or signature. The

overhead in the RecipientInfo and SignerInfo structures still outweighs the over-

head outside these structures.

4.2.1 Specification of Algorithms

One of the sources of overhead is in the specification of algorithms in both of these

data structures. SignedData has a set of digest algorithms specified in the top level

so that a processing program can determine if it supports all the digest algorithms

used in the set of SignerInfo structures. Each SignerInfo corresponds to one

signature. Thus each SignerInfo has a signature and digest algorithm specified.

Each digest algorithm takes around 10 bytes of space in the structure. Each signature

algorithm takes about 10 bytes of space as well. In the EnvelopedData structure,

the EncryptedContentInfo specifies an encryption algorithm which uses 10 bytes of

space, and more if initialization vectors (IVs) are needed, like the IV needed by AES

in cipher block chaining mode [44]. For each recipient the CEK encryption algorithm

is specified through one of the key management methods.

4.2.2 Content Encryption Keys

Much of the extra data in CMS packages is used by the CEK sent to each recipient of

an encrypted package. This extra data is not overhead because it is needed to decrypt

the encapsulated content. The more recipients that an EnvelopedData structure has,

the more CEKs that will be generated when using S/MIME. This is because S/MIME

dictates that a CEK be sent to each recipient separately so that each recipient can

use his own private key to decrypt the data.

The most expensive (in size) method of key management in CMS is the Key Trans-

port mode where X.509 public keys are used to encrypt the CEK separately to each

recipient. These keys are generally large since they are asymmetric keys (2048 bits or

greater). In the other key management schemes, Key Agreement, Password, and Key

Encryption Key, the content encryption keys are smaller as they use symmetric keys.

41

4.2.3 Formatting and Encoding

CMS uses ASN.1 structures [21] in order to describe all of its elements. ASN.1 struc-

tures offer flexibility in how a piece of data is represented and in how the structure can

be encoded to pass to other entities. The normal encoding for CMS is Basic Encoding

Rules (BER). This encoding has two subsets, Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER). BER encoding defines each data element as a

type identifier, a length description, and then the actual data content which may be

ended by an end-of-content marker. This format allows a receiver to obtain the nec-

essary information about a data element without any pre-existing knowledge about

the structure and without the full stream of data. The CMS data may also be DER

encoded, which differs from BER only in that the length specifications for each value

must be made in one way; i.e., no end-of-content marker exists.

4.2.4 Optional Data

Finally the multitude of optional items in CMS structures can add much extra data to

the package. These options are included in CMS to support situations when no form

of key management infrastructure are in place or when the sender wants the receiver

to be able to use the CMS messages without any other outside information, or to

transport authentication material such as certificates and certificate revocation lists.

For example, in the EnvelopedData structure, the sender may include information

about itself including certificates which may be necessary to verify signatures.

The structure also allows for an undetermined number of unprotected attributes.

The SignedData structure supports optional signed and unsigned attributes for each

signature as well as certificates or certificate revocation lists. All these options add

extra data to the CMS structure, but are not mandatory for the base functionality

of CMS.

42

4.2.5 Potential Solutions

As mentioned in 4.2 the major sources of overhead in the CMS package are generally

from specifying algorithms, formatting and encoding the data, adding cryptographic

material necessary to sign and/or encrypt the encapsulated data, and allowing for

flexibility by providing means to add optional data such as timestamps, certificates,

and certificate revocation lists. Solutions to the overhead problem must be able to

recreate CMS structures without disturbing the integrity of the data or fundamentally

altering the algorithms and methods necessary to perform cryptographic operations

on the data.

4.3 Requirements

There are several requirements to any solution which attempts to reduce overhead in

CMS.

1. Recoverable

When a CMS package is transformed in order to reduce its overhead, the package

should then be able to be completely restored to its original state. This is the

most important rule as our encryption, signing, and authentication will not

work without this guarantee.

2. Flexible

Any solution should work with the main structures available in CMS. Also, al-

gorithms which are supported by CMS should continue to be supported by the

solution. Variable numbers of recipients and signers should also be supported.

While not all algorithms need to be supported, a solution should enable the

passing of cryptographic data associated with different algorithms. For exam-

ple, AES with cipher block chaining requires initialization vectors and Diffie-

Hellman algorithms require passing of public information.

3. Extensible

When the CMS structure is extended via RFCs, minimal effort should have to

43

be made to make the solution support the new changes. From the past 10 years

there are 55 RFCs with CMS in the title. This means that the syntax is being

changed as it finds new uses and one of its strengths is its extensibility. Our

changes should take this strength into account.

4. Simple

The more complexity involved in creating a solution to reduce overhead, the

more opportunity for error the solution can provide.

With these thoughts in mind, we attempted to find and evaluate a few solutions to

reduce the overhead introduced by CMS.

4.4 General Purpose Compression to Reduce Over-

head: ZLIB

In the previous sections, we described the sources of overhead in a CMS structure.

This section details one potential solution which will reduce the size of a CMS struc-

ture. Here we propose using ZLIB [29] compression on the CMS structure in order

to reduce its overhead. We then detail our thoughts on how to best compress CMS

structures.

4.4.1 ZLIB Overview

ZLIB is an algorithm that provides lossless compression [29]. It is an open standard

with free source code, and was already used in libraries we depend on, like OpenSSL.

Let us look at the inner workings of ZLIB so we can understand how it applies to

compressing CMS.

Background

ZLIB was developed as a lossless compression format that would be

44

• Independent of the other parts of the system it was used on, including CPU,

operating system, file system, etc.;

• Efficient in compressing data compared to the best compression algorithms;

• Free from patents so the algorithm could be used freely;

• Usable with the previously developed gzip file format [29].

The Structure

A ZLIB encoded structure is described by a series of blocks which correspond to

substrings of the data. Each of the block sizes have variable length under 65535

bytes. Each block compressed into literal strings with distance pairs using LZ77 [57]

and Huffman coded [38] to create a Huffman tree. For each block of compressed data,

the block may reference data which occurs in a previous block up to 32KB before

the current position. Each block has two parts, Huffman code trees that describe the

compressed data, and the actual compressed data. Each of the Huffman code trees

also is compressed using Huffman coding. The compressed data is represented by a

series of elements based on two types. The series is listed in the order that it appears

in the structure. The first type is a literal which is simply a string of bytes which

has not been duplicated in the previous 32KB of data. The next type is a pointer

which is a represented as a pair <length, distance> which describes the length of

the literal string and the distance (maximum 32KB) backwards in the structure to

that literal. The length of a literal is limited to 258 bytes and the length of an output

block is limited to 8KB under the C implementation [28].

Deflate/Inflate Processing

So how does ZLIB compress? ZLIB calls compression a deflate operation and de-

compression an inflate operation. As the compressor parses through the data, it

determines when to start new blocks of data, which is when the buffer becomes full

or when it determines that having new Huffman trees would be useful. For every

45

input block, the compressor looks at 3 byte sequences and writes it out to the output

block if it has not been seen. That sequence is written to a hash table for lookup

later on. If the sequence has been seen, then it will be in the hash table and the

compressor writes a pointer to the nearest previous 3 bytes and the total number

of bytes (length) that are the same. This compression process is shown in Figure

4-3. To improve compression, as the compressor finds sequences in the hash table,

it will make extra passes through the previous data in an attempt to find a longer

matching sequence. This is called lazy matching by the ZLIB authors. The algorithm

can be configured to spend less time trying to find longer matches to improve speed

of compression at the cost of a worse compression ratio [28].

Interface

Deflate Inflate
Basic Advanced Basic Advanced
deflateInit deflateInit2 inflateInit inflateInit2

deflate deflateCopy inflate inflateSync

deflateEnd deflateReset inflateEnd inflateReset

deflateSetDictionary inflateSetDictionary

Table 4.2: Core ZLIB API pertinent functions

The interface in Table 4.4.1 defines a z stream structure which stores the com-

pressor/decompresser data needed for compression. A simple example of using the

ZLIB interface would be to initiate the stream with deflateInit. Then the data

would be fed into the z stream structure and processed with deflate. The stream

is closed with deflateEnd. In order to inflate the data, a user would use inflateInit,

then inflate and inflateEnd. The API offers options for the compression level from

Z NO COMPRESSION to Z BEST COMPRESSION and also when to flush the data. Using

the functions deflateSetDictionary and inflateSetDictionary a pre-placed dictionary

of literals may also be input to prime the compressor [24]. Table 4.4.1 shows the

low-level functions available to the API users.

46

Our Takeaways

We concluded that ZLIB offers a simple way of compressing data while maintaining

recoverability and also offers tunable compression on different data sets using the

dictionary option. We next look at how ZLIB could be applied in the context of a

disadvantaged network. The following sections describe our studies into the best way

of using ZLIB to compress CMS data.

4.4.2 Optimal Conditions: Reliable TCP with Repeated CMS

Structures

The first exploration into using ZLIB we use an optimal situation, assuming a user

was sending the same CMS structure over the network with no network slowdowns

or outages. The performance of this test is shown in 6.3.3. The only difference in

the messages was the actual data sent in the package, which was set to random bytes

of data each time. We use ZLIB with its best compression and partial flushing of

the data for each CMS structure. When partial flushing is used, ZLIB maintains the

32KB of previous data from which to compress the data. When CMS structures are

repeated with the same senders and recipients, most of the CMS overhead will be

repeats of the same information. Therefore, ZLIB can compress this data out. Only

the random encapsulated data would be uncompressable. This test served as a lower

limit baseline for our use of ZLIB as real-world usage of CMS may not replicate this

scenario.

4.4.3 Worst Case Conditions: Disadvantaged Networks

The second case we investigated was the worst case condition. Results for this test

are discussed in section 6.3.3. In this case, we assume that there is no reliable uninter-

rupted stream of data coming from the network. Assuming CMS structures smaller

than one TCP or UDP packet, the ZLIB compression structures may need to be reset

many times because the connection between entities is unreliable. To simulate this

condition, we compressed every message separately. This assumes the compressor can

47

not utilize the previous data in the stream and represents the worst case when every

message must reset the ZLIB stream.

4.4.4 Priming the Pump:

Generating a CMS ZLIB Dictionary

The first two studies with optimal conditions and worst case conditions set the upper

and lower bounds for what kind of compression we could expect to generate from

compressing CMS messages. However, we would like to achieve near the compression

level similar to the one on the optimal network while being on an unreliable network.

Strategy

Our first solution to the problem was to preplace a static dictionary of commonly

used literals in CMS in the ZLIB stream in order to simulate ZLIB compressing a

number of CMS messages before sending each message. This way, the ZLIB stream

can be ’primed’ with the CMS literals before compressing the new message to be

sent. This method improves compression toward what we get when there is optimal

conditions while assuming that compression can not rely on previous messages sent

on the network.

This strategy relies on how ZLIB creates compressed data. As mentioned in 4.4.1

ZLIB has a memory buffer which stores the last 32KB of data compressed by the

structure. In optimal conditions, the last 32KB contain previously sent CMS struc-

tures which can be referenced for compression gains. When we preplace a dictionary

in ZLIB, the dicitonary’s strings fill some of the memory buffer and provide a ref-

erence that ZLIB can use to better compress the new message. However, since the

memory buffer is only 32KB, the dictionary can only be up to 32KB in size. Any

larger and it will not be able to be referenced when compressing the new message.

The side effect of the limit on dictionary size is that we must choose the literals to

put into the dictionary carefully.

48

ZLIB memory buffer

Preplaced CMS Dictionary CMS Data

literal strings

ZLIB Compressor

Input

compress

= pointers + literalsoutput

Figure 4-3: ZLIB is preplaced with a dictionary full of literal strings which contain common
CMS data. The compressor can then reference those strings when creating the output and
use pointers rather than copying the original data.

Assembling a Dictionary

We attempted to find an optimal dictionary for compressing CMS structures, focusing

on the larger structures (Enveloped/Signed). The first approach we took was to

simply create every type of CMS message supported by OpenSSL and DER encode

them. Then we concatenated all those messages together as the dictionary. Next we

looked at how we could reduce the size of this dictionary by writing only the relative

constant data in all the CMS structures to the dictionary. Our assumption was that

any random-appearing or user-specific data in the CMS structure would not compress

out of the structure on average as these strings would not appear in another CMS

message.

The other method by which we attempt to reduce CMS overhead is by including

certificate information. As part of SignedData and EnvelopedData messages, as

mentioned in section 3.3 there are options to include both certificates and certificate

revocation lists. These pieces of data are sent so that recipients know which certificate

is being used to sign or encrypt the data. We created a dictionary made from a series

49

of commonly used root-level certificates using the pre-installed root certificates from

the Mozilla Firefox web browser [7] and DoD root certificates which may commonly

be used on DoD networks. In CMS, most messages will include user certificates as

root-level certificates are many times installed into hardware through other means.

However, user certificates are signed by higher-level certificates to establish trust, and

thus, most will have issuer names which may be included in root-level certificates.

This common data would compress when a dictionary with root level certificates is

used. Also, optional data included in CMS packages sometimes includes certificates

and certificate identifiers in CRLs. By including commonly used certificates in the

dictionary, these certificates will cost negligible space in transmission.

Figure 4-4: Composition of one CMS dictionary. We also assembled dictionaries with full
CMS structures and dictionaries with certificate identifiers for commonly-used certificates
added to the dictionary.

Finally we found that identifiers for certificates are commonly sent in CMS mes-

sages so that recipients know which certificate is being used to sign or encrypt a

message. We added this identifier information for all the certificates we were testing

CMS with in order to compress this information.

We then concatenated the CMS dictionaries with the certificate dictionaries to test

their effectiveness compared to the worst case and ideal compression. The results are

shown in section 6.3. We show the different dictionaries tested in Table 4.3.

Compressing and Decompressing

The compression and decompression procedures are shown in Figures 4-5 and 4-6.

The CMS structure created is encapsulated by a ZLIB structure which contains

references to data in the CMS dictionary. Thus, during decompression, the same

50

Dictionary Id Description
CMSStringDict CMS Shortened Strings
CMSFullDict CMS Full Structures
CMSFullCertDict CMS Full Structures + Root Certs
CMSStringCertDict CMS Strings + Root Certs
CMSFullIssuer CMS Full Structures + Dummy User Certificate Issuer and Serials
CMSStringIssuer CMS Strings + Dummy User Certificate Issuer and Serials

Table 4.3: Tested dictionary compositions

Figure 4-5: Compressing a CMS structure with a ZLIB dictionary

dictionary is needed on the receiver side. This creates a small problem with de-

compression. The recipient must have the preplaced CMS dictionary in order to

decompress the data, but if the dictionary is used, currently in CMS there is no way

of determining which version of the dictionary to use.

This problem with the dictionary can be solved by wrapping the ZLIB structure

in a CMS CompressedData structure and supplying it with a hash of the dictionary

data to use. The CMS parser with the recipient can then have a set of dictionaries

and compute the hash of each dictionary against the hash in the message in order

to determine which dictionary to use. The ASE authenticated data transmission

system may be used to exchange dictionaries in order optimize this procedure for

disadvantaged networks 1.

Alternatively, for a solution using less overhead, the CompressedData structure

could add an integer or name which acts as a universal resource identifier (URI) that

1Benjamin W. Fuller, Roger I. Khazan, Joseph A. Cooley, Galen E. Pickard, and Dan Utin. ASE:
Authenticated Statement Exchange, Submitted for publication, 2009.

51

Figure 4-6: Decompressing a CMS structure with ZLIB

uniquely identifies the dictionary to use in decompressing the message. Both of these

data elements could be optional parts of the CompressedData structure to be included

if a dictionary is used in compression.

We chose to use the MD5 hash solution and augmented the CMS CompressedData

structure with a string which stores the path to the dictionary file, an octet string

which stores the hash of the dictionary, and an algorithm identifier for the digest used

in the hash.

4.5 Content-Aware Compression to Reduce Over-

head: CMS Lite

We previously described how ZLIB compression reduces the overhead of CMS. This

method utilized a preplaced dictionary with CMS messages. We also explored another

way to reduce CMS-related overhead. We hoped that a custom translation of the

CMS structures to optimized structures could take advantage of our knowledge of the

structures of CMS. We reasoned that we should be able to create our own CMS-specific

compressed data type using lookups to replace data to compress messages. Thus, we

created CMS Lite. This version of CMS is a shortened and compressed version of

CMS which can be used to transfer CMS data over a disadvantaged network. CMS

Lite can then be inflated back into a normal CMS structure when the data is unpacked

by a recipient.

52

4.5.1 CMS Lite Design

The Lite version of CMS requires more intimate knowledge of the inner structures

in CMS than the ZLIB-powered generic data compression. In order to create a CMS

Lite structure, Lite versions of each subtype of CMS structure has to be created. In

these Lite versions, content type descriptors and algorithm descriptors are referenced

by a table lookup from a single integer value.

To limit the scope of what CMS Lite could compress, we put further limitations

on how the structures could be created for the Lite type. The number of algorithms

supported by this structure becomes more structured compared to the normal CMS

type. If there is an algorithm used that is not included in the lookup, then the Lite

structure can not be created and the original is preserved.

Next, we flattened structures in CMS, bringing the important data out of nested

structures so that more overhead would not be used to describe the inner structures.

Lite structures also can require specific configurations and key management structures

rather than have multiple nested ASN.1 structures to support any configuration so

that more data can be saved.

Finally, we found that identifiers for certificates could be hashed instead of sent

whole. The hash of the identifier can then be compared to hashes of certificate

identifier information rather than the full identifiers in order to recreate the original

messages. Similarly, a prefix of the identifier could be used in order to reference that

certificate.

4.5.2 Encode and Decode

CMS Lite is designed as a transfer data type only, which is similar to compressed data

types. Thus, no CMS API functions can be called using the CMS Lite data structures

even though Lite structures may resemble their normal CMS counterparts. Figure 4-7

shows a possible use of CMS Lite. The structure is meant to be the transfer structure

for the CMS data, which is then reverted to the original CMS structure.

53

Figure 4-7: CMS Lite encode/decode

4.5.3 CMS Lite Transformations

For CMS Lite we define a LiteData content type at the same level as all the other

CMS content types. It contains a choice of parameterized lite versions of each of the

other CMS content types. Its ASN.1 structure is shown below in Listing 4.1.

// CMS LiteData includes a choice of parameters representing

// All of the different CMS contentTypes

CMS LiteData ::= CHOICE {

signedParams CMS_Signed_params ,

envelopedParams CMS_Enveloped_params ,

digestedParams CMS_Digested_params ,

encryptedParams CMS_Encrypted_params ,

authenticatedParams CMS_Authenticated_params ,

compressedParams CMS_Compressed_params

}

Listing 4.1: CMS Lite

The transformations and changes for each CMS contentType are detailed below:

CMS EnvelopedData Transform

In order to reduce overhead in EnvelopedData structures, the encryptedContentInfo

is flattened by taking out the encrypted data and contentEncryptionAlgorithm and

the contentType and key management encryption algorithm (used to encrypt the

content encryption key) are defined by the parameter. The encryptAlg information

stores the initialization vector and algorithm information for the content encryption

key which is used to encrypt the data. OriginatorInfo (certificates and CRLs) can

54

be sent with the data as an option, but will not be compressed in the CMS Lite

structure. The updated structures are shown in Listings 4.2 and 4.3.

The key management schemes all have parameter versions as well. In general

the parameterized versions insert a lookup for any static algorithm identifiers and

also instead of using the full certificate issuer name and serial number or subject key

identifier to identify any certificates, uses a hash of that data instead.

One limitation is that since the parameter can only give one key management

key encryption algorithm, only one type of key encryption algorithm can be used

for all recipients, making the Lite type a little more restrictive than the normal

CMS EnvelopedData type. As seen in Listing 4.3 the recipientInfos do not have

encryption algorithms defined. They instead all use the parameter in the Enveloped

Params structure to define the algorithm instead. The algorithms used are necessarily

limited to ones defined in the lookup.

EnvelopedData ::= SEQUENCE {

version CMSVersion ,

originatorInfo [0] IMPLICIT OriginatorInfo OPT ,

recipientInfos SET SIZE (1... MAX) OF RecipientInfos ,

encryptedContentInfo EncryptedContentInfo ,

unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPT

}

RecipientInfo ::= CHOICE {

ktri KeyTransRecipientInfo ,

kari KeyAgreeRecipientInfo ,

...

}

KeyTransRecipientInfo ::= SEQUENCE {

version CMSVersion ,

rid CMSSignerIdentifier // issuer/serial or subjectkey

keyEncryptionAlgorithm X509_ALGORITHM

encryptedKey OCTET STRING

}

Listing 4.2: Normal EnvelopedData

55

Enveloped_params ::= SEQUENCE {

version CMSVersion ,

recipientInfos SET SIZE (1... MAX) OF Recipient_params ,

parameter LONG ,

encryptAlg X509_ALGORITHM ,

eContent OCTET STRING

}

Recipient_params ::= CHOICE {

ktp KeyTransParams ,

kap KeyAgreeParams ,

kekp KEKParams ,

pwdp PasswordParams

}

KeyTransParams ::= SEQUENCE {

version CMSVersion ,

sidHash LONG , // issuer/serial or subjectkey ID hash

type LONG , // tells whether sidHash is issuer/serial or

subjectkey

encryptedKey OCTET STRING

}

Listing 4.3: Reduced EnvelopedData

CMS SignedData Transform

In the SignedData structure, we eliminate the OPTIONAL certificates and CRLs

to be sent with the data. The encapsulatedContentInfo is flattened with the

contentType of the encapsulated data then identified by the parameter. The con-

tent is placed in eContent. The set of digest algorithms in the normal type can be

eliminated as it is normally included for one-pass processing efficiencies, which we

gladly give up for less space usage. These updates and the original structures are

shown in Listings 4.4 and 4.5.

In the set of SignerInfo we replace digest algorithm and signature algorithm

identifiers with a lookup table parameter. Then we hash the signerIdentifier once

56

more to reduce its overhead.

There are a few limitations introduced by the CMS Lite transformation. The al-

gorithms used for signature and digest must be in the lookup table. Also certificates

and CRLs should be sent via another mechanism. Signed attributes can be included

in the SignerInfo Params structure but we choose not to implement including un-

signed attributes since OpenSSL generally does not add any unsigned attributes in

its implementation.

SignedData ::= SEQUENCE {

version CMSVersion ,

digestAlgorithms SET OF DigestAlgorithmIdentifiers ,

encapContentInfo EncapsulatedContentInfo

certificates SET OF CertificateSet OPTIONAL ,

crls SET OF RevokationInfoChoice OPTIONAL ,

signerInfos SET OF (1... MAX) SignerInfo ,

}

SignerInfo ::= SEQUENCE {

version CMSVersion ,

sid SignerIdentifier // issuer + serial or subject key ID

digestAlgorithm DigestAlgorithmIdentifier

signedAttrs SET OF (0... MAX) SignedAttributes OPTIONAL ,

signatureAlgorithm SignatureAlgorithmIdentifier ,

signature OCTET STRING ,

unsignedAttrs SET OF (0... MAX) UnsignedAttributes

OPTIONAL ,

}

Listing 4.4: Normal SignedData

CMS DigestedData and CMS EncryptedData Transforms

In the DigestedData structure shown in Listings 4.6 4.7 we are able to create a

lookup for the content type and for the digest algorithm to save a 10-20 bytes. In

the EncryptedData structure shown in Listings 4.8 and 4.9 we can only flatten the

encryptedContentInfo structure and add a lookup for the content type.

57

Signed params ::= SEQUENCE {
version CMSVersion ,
contentType LONG ,
eContent OCTET STRING ,
signerInfos SET OF (1... MAX) SignerInfo params ,

}
SignerInfo params ::= SEQUENCE {

version CMSVersion ,
type LONG , // tells us what type sidHash is
sidHash LONG , // signerIdentifier hash
parameter LONG , // LOOKUP for signature and digest

algorithms
signedAttrs SignedAttributes OPTIONAL ,
signature OCTET STRING

}

Listing 4.5: Reduced SignedData

DigestedData ::= SEQUENCE {

version CMSVersion ,

digestAlgorithm X509_ALGORITHM ,

encapContentInfo EncapsulatedContentInfo , // holds data

digest OCTET STRING ,

}

Listing 4.6: Normal DigestedData

Digested params ::= SEQUENCE {

version CMSVersion ,

contentType LONG ,

eContent OCTET STRING ,

digest OCTET STRING ,

}

Listing 4.7: Reduced DigestedData

58

EncryptedData ::= SEQUENCE {

version CMSVersion ,

\\ Data + Encryption Algorithm

encryptedContentInfo EncryptedContentInfo ,

unprotectedAttrs SET OF unprotectedAttrs OPTIONAL ,

}

Listing 4.8: Normal EncryptedData

Encrypted params ::= SEQUENCE {

version CMSVersion ,

contentType LONG ,

encryptAlg X509_ALGORITHM ,

eContent OCTET STRING ,

}

Listing 4.9: Reduced EncryptedData

CMS CompressedData Transform

We had already modified the original CompressedData according to section 4.4.4 by

adding an identifier for a dictionary. Our method of adding an identifier was to add

a digest to the CompressedData. Our other transforms to this structure were to

add lookups for algorithms and the content type. These transforms are shown in

Listing 4.11.

CompressedData ::= SEQUENCE {

version CMSVersion ,

compressionAlgorithm X509_ALGORITHM ,

encapContentInfo EncapsulatedContentInfo ,

dictionaryAlgorithm X509_ALGORITHM ,

dictionaryDigest OCTET STRING ,

}

Listing 4.10: Normal CompressedData

59

Compressed params ::= SEQUENCE {

version CMSVersion ,

parameter LONG , // lookup for compressionAlg + digestAlg

eContent OCTET STRING ,

dictionaryDigest OCTET STRING ,

}

Listing 4.11: Reduced CompressedData

CMS AuthenticatedData Transform

AuthenticatedData contains a message authentication code algorithm and optional

digest algorithm. The Lite version of AuthenticatedData implements parameters

for these algorithms and repeats the same modifications done to the EnvelopedData

for its RecipientInfo data. The results are shown in Listing 4.13.

AuthenticatedData ::= SEQUENCE {

version CMSVersion ,

originatorInfo originatorInfo OPTIONAL ,

recipientInfos RecipientInfos ,

macAlgorithm MessageAuthenticationCodeAlgorithm ,

digestAlgorithm DigestAlgorithmIdentifier OPTIONAL ,

encapContentInfo EncapsulatedContentInfo ,

authAttrs AuthAttributes OPTIONAL ,

mac MessageAuthenticationCode ,

unauthAttrs UnauthAttributes OPTIONAL

}

Listing 4.12: Normal AuthenticatedData

60

Authenticated params ::= SEQUENCE {

version CMSVersion ,

originatorInfo originatorInfo OPTIONAL ,

recipientInfos RecipientInfo params ,

parameter LONG , // for algorithms and contenttype

eContent OCTET STRING

authAttrs AuthAttributes OPTIONAL ,

mac MessageAuthenticationCode ,

unauthAttrs UnauthAttributes OPTIONAL

}

Listing 4.13: Reduced AuthenticatedData

4.5.4 Using CMS Lite

The CMS Lite structure performs tradeoffs to achieve smaller message size. Some

of the data elements in CMS are used to increase efficiency in parsing the message.

These are cut out in CMS Lite. Other data elements increase the flexibility of the

structure. We use parameters to perform lookups into tables instead of allowing

any type of algorithms and contentType. This saves space but limits the number of

algorithms that can be expressed to those which are already known and accounted

for. Finally, eliminating some OPTIONAL certificate, CRL, and attribute data limits

the range of data that can be passed through CMS. All these changes help reduce the

size of the message in a disadvantaged network situation.

We note CMS’s encapsulation properties in section 3.3.1. CMS Lite can also be

used in these circumstances, but should be used in a specific order. When creating

encapsulated structures, each level of structure should be encoded into a CMS Lite

structure before moving to the next level. This is because none of the data inside

each structure is known. On receipt, the recipient would then have to run CMS Lite

decoding on each level of the structure to recreate the original message. The reverse

procedure would have to be done for the recipient to unfold and decode the structure.

A nested CMS structure encoding procedure is shown in Figure 4-8.

61

Figure 4-8: Encoding encapsulated CMS Lite structures

4.5.5 Table Lookups

One of the ways we reduce overhead is by using lookups for certain types of informa-

tion in CMS. We reduce several table lookups into one parameter which is stored as

a LONG type. The information in the long is stored bitwise. Each type of information

has a bitmask with 4 bits of information unmasked for each content type in the table.

On encode, CMS Lite processes all the constant data to be put in the parameter and

creates integer identifiers for each piece of data according to the lookup table. The

identifiers are bit shifted according to their type and added to the parameter. The

lookup table with the bit masks and shifts is shown in Table 4.4.

62

4.6 CMS Lite and ZLIB

A limitation of the CMS Lite transform is that optional data like attributes, certifi-

cates, and CRLs can not be easily reduced in size. These optional structures may

have a large number of configurations, and thus specifying a transform for each one

would be both time consuming and only beneficial in certain circumstances.

However, a possible solution to this problem is to create a CMS Lite transform,

then compress it using ZLIB with preplaced dictionaries as described in section 4.4.4.

The dictionary could be modified to add in common optional data in certificates,

CRLs, and attributes. CMS Lite would eliminate overhead due to ASN.1 encoding

and fixed structures while ZLIB would eliminate overhead from the optional data. In

order to regain the original CMS structure, the ZLIB-compressed CMS Lite structure

would have to be decompressed by ZLIB, then decoded from CMS Lite to normal

CMS structures. This potential solution has not been tested, but is an idea for

further research in this field.

4.7 Summary

We performed a study on Cryptographic Message Syntax in an attempt to optimize

the use of CMS in a disadvantaged network. We presented a few possible solutions to

optimize CMS by reducing its message overhead. The first method to reduce overhead

was through compression of the constant literals in CMS. In this method we used

ZLIB while priming the compressor with a preplaced static dictionary containing

CMS messages. The second method was to create a Lite version of CMS which

reduced the size of each CMS message. These solutions are evaluated in Chapter 6

according to their recoverability, flexibility, extensibility, and simplicity. For both

ZLIB compression and CMS Lite there is an issue of applying them to a CMS message

that contains encrypted CMS messages. However, we can get around this limitation

if we apply the compression methods first before encryption.

63

Name Parameter mask Value Data Type

AES-128bit-cbc 0x00000F 1 Data Encryption Alg
AES-256bit-cbc 0x00000F 2 Data Encryption Alg
RC4 0x00000F 3 Data Encryption Alg
RC4-32-12-16-cbc 0x00000F 4 Data Encryption Alg
CAMELLIA256cbc 0x00000F 5 Data Encryption Alg
bfcbc 0x00000F 6 Data Encryption Alg
ideacbc 0x00000F 7 Data Encryption Alg
cast5cbc 0x00000F 8 Data Encryption Alg
des-ede3-cbc 0x00000F 9 Data Encryption Alg
des-ede-cbc 0x00000F 0 Data Encryption Alg
data 0x0000F0 0 Content Type
signed 0x0000F0 1 Content Type
enveloped 0x0000F0 2 Content Type
signedandenveloped 0x0000F0 0 Content Type
digested 0x0000F0 4 Content Type
encrypted 0x0000F0 5 Content Type
compressed 0x0000F0 6 Content Type
lite 0x0000F0 7 Content Type
RSA Encryption 0x000F00 0 Key Management Alg
RSA Encryption 0x00F000 0 Signature Alg
DSA-with-SHA1 0x00F000 1 Signature Alg
ECDSA-with-SHA1 0x00F000 2 Signature Alg
md2 0x0F0000 0 Digest Alg
md4 0x0F0000 1 Digest Alg
md5 0x0F0000 2 Digest Alg
sha1 0x0F0000 3 Digest Alg
dss 0x0F0000 4 Digest Alg
ecdsa 0x0F0000 5 Digest Alg
sha224 0x0F0000 6 Digest Alg
sha256 0x0F0000 7 Digest Alg
sha384 0x0F0000 8 Digest Alg
sha512 0x0F0000 9 Digest Alg
mdc2 0x0F0000 10 Digest Alg
ripemd160 0x0F0000 11 Digest Alg

Table 4.4: CMS Lite parameter lookup table

64

CMS Structure Parameterized Variables Data Type

EnvelopedData

encryptedContentType Content Type
contentEncryptionAlgorithm Data Encryption Alg
keyEncryptionAlgorithm Key Management Encryption Alg

SignedData

encapContentType Content Type
digestAlgorithm signerInfo Digest Alg
signatureAlgorithm signerInfo Signature Alg

EncryptedData encryptedContentType ContentType

DigestedData
encapContentType Content Type
digestAlgorithm Digest Alg

CompressedData
encapContentType Content Type
dictionaryAlgorithm Digest Alg

Table 4.5: Variables in each CMS Structure which are replaced by parameters

65

66

Chapter 5

Implementation of Techniques

In the previous chapter we examined a few methods to eliminate overhead in CMS

messages. We described ZLIB in detail and how to improve per-message compression

using a static, preplaced dictionary composed of common message elements. We also

described methods used to create a Lite version of CMS which used lookups, hashes,

and reduced optional data in order to decrease the size of the CMS message. These

methods can encode a message for transport on a network and decode it in order to

restore the original messages.

This chapter is geared toward an implementor possibly working on or extending

this work. Here we discuss the details of our implementation environment. Then we

discuss how we extended OpenSSL to use dictionaries. Finally, we describe how to

manipulate ASN.1 structures in the OpenSSL library to create the new CMS Lite

structure and how we encode and decode from normal CMS messages to CMS Lite

messages.

5.1 Technologies Used

Before we delve into problem details, we describe the development environment, tools,

and libraries used to implement and test our software. We mention tools and libraries

that we used to build our solutions as well as systems that we depended upon and

used to test our implementation.

67

5.1.1 Tools and Environment

The development environment consisted of Ubuntu 8.04 Hardy Heron running as a

VMware Workstation [15] image on a Windows XP laptop. The majority of code was

written with the vim [14] text editor, and ctags [2] allowed vim to quickly navigate

among symbols and files. In order to incorporate code into larger projects we used

GNU Autotools [12]. The tool gdb [3] proved invaluable in debugging. Finally, this

document was created using LATEX with the editor Kile [5].

5.1.2 Libraries and APIs

Several libraries were important to the successful completion of this study. The

CMS optimizations rely heavily on previously developed code, as it would have been

impossible to complete without it, and because there’s no sense in reinventing the

wheel.

ZLIB

We chose ZLIB not only because it offered lossless compression, but also because the

API for ZLIB was readily available. The ZLIB API has an associated Perl API and

also can be added as an option to OpenSSL. Our code used the C API of ZLIB version

1.2.3 described in Table 4.4.1.

OpenSSL

Our implementation is highly dependent on OpenSSL [13]. OpenSSL is an open-

source effort that implements a general-purpose cryptographic library, various crypto-

graphic message packing formats, SSLv2/v3, and TLSv1. In version 0.9.8h, OpenSSL

included support for handling CMS. We modified that support in version 0.9.8j to

implement our ZLIB compression scheme and CMS Lite. The CMS library is disabled

by default and must be enabled while configuring OpenSSL.

We enable OpenSSL’s use of ZLIB compression. We also build OpenSSL as a

shared library for use by our testing infrastructure. We used the OpenSSL ver-

68

sion 0.9.8j as the base version for our tests. During the build process, we configure

OpenSSL for our needs by using the following command line:

./configure enable-cms zlib shared

The first option builds CMS support, including our modifications. The second links

in ZLIB support, which OpenSSL can use internally, and which we rely on for our

ZLIB performance enhancements. The final option causes the build system to create

a shared library for use by our testing infrastructure.

As of version 1.0.0-beta2, the OpenSSL library supports only a subset of CMS.

For instance, the OpenSSL CMS library only supports one form of key management,

Key Transport mode. Within Key Transport, only RSA certificates can be used.

This limits our interoperability with GROK 1 and ASE, sister projects for developing

efficient cryptographic systems on disadvantaged networks, since they require different

key management modes and elliptic curve certificates.

Here are some helpful hints for users modifying the OpenSSL source: OpenSSL

offers several facilities to help find and reduce bugs in code that relies on the library.

They include error messages, a safe stack implementation, and a set of regressions

tests, which can be found in the util/ directory of the source code. Errors can be

generated with mkerr.pl by specifying a function code for the name of the function

in which the error occurs and a reason code explaining why the error occurred. For

instance, if the user wanted to generate an error in the function CMS_Encrypt_Data,

then the associated function code might be CMS_F_ENCRYPT_DATA and reason code might

be CMS_R_NO_CERTIFICATE. The mkstack.pl script will create type-specific functions for

stack access for every ASN.1 type for which DECLARE_STACK_OF(TYPE) has been called.

5.2 Compression Implementation

This next section details some of the structures and functions used to create a com-

pressed CMS type with a preplaced dictionary. We will also look at some of the

1Joseph Cooley, Roger Khazan, Benjamin Fuller, and Galen Pickard. GROK: A Practical System
for Securing Group Communications. Submitted for publication, 2009.

69

functions we used to create CMS dictionaries to support zlib compression. For each

part we will look at the high-level functionality of the code, then give some code

snippets which should help an implementer understand the low-level details.

5.2.1 Strategy

We used the OpenSSL BIO facility to implement CMS ZLIB compression. These

structures are used to perform input and output over a variety of interfaces. BIO

structures can read and write from network interfaces, files on disk, and in-memory

structures. Other BIO structures act as filters for data. Message digest computation,

encryption algorithm input/output, and compression are also implemented using BIO

structures. In order to create the compressed data from the input data, we use the

following function calls.

BIO *memory;

BIO *zlib;

BIO *data;

BIO *chain;

memory = cms_content_bio () // create a new memory storage BIO

zlib = BIO_f_zlib () // Initialize the ZLIB BIO filter

BIO_setDict(zlib ,dictionary) // set the dictionary file

chain = BIO_push(zlib , memory) // Add the memory BIO to the end

// of the ZLIB BIO

// Write the input data BIO through the

// zlib filter to the memory bio

SMIME_crlf_copy(data ,chain);

CMS_dataFinal(cms ,chain);

// Store the resulting data into the cms structure

cms_copy_content(chain ,out); // Decompress

Listing 5.1: Creating compressed data

70

A similar procedure to the one in listing 5.1 is used to compress and decompress the

data in the compressed data type. We add the BIO_setDict function in this listing.

This function takes a character string representing the path to the dictionary file

and loads the dictionary file into memory with a maximum size of 32KB (since ZLIB

doesn’t support more than a 32KB dictionary). The BIO chains are constructed as

shown in Figure 5-1 Two other pieces of data are used to reference the dictionary in

the CMS CompressedData structure. We took the approach using a dictionary digest

to reference the dictionary. To create the digest, we re-used OpenSSL code to create

a digest, and copied the content and the digest algorithm into the CompressedData

structure. To uncompress a structure, a user must select a dictionary that matches

the dictionary used to compress the message. The user’s dictionary digest is matched

to the digest sent with the payload before uncompressing the structure with the input

dictionary. The function returns NULL and error messages if the dictionaries do not

match or if the data can not be uncompressed.

Figure 5-1: The ZLIB filter compresses data and writes it into the adjacent BIO.
The adjacent BIO, a memory BIO, stores the data into the data section of the
CompressedData CMS structure.

71

5.2.2 Extending ZLIB BIO

In order to support a dictionary, the ZLIB BIO structure needed to have pointers to

the data and the length of the data. BIO_setDict calls a macro BIO_setDict(b, f)=>

BIO_ctrl(b, BIO_CTRL_COMP_ZLIB_DICT, 0, f) This calls functions available only to the

zlib BIOs and will return errors if called on other BIO types. In ZLIB, this will call,

BIO_setDictionary(BIO *b, char *filename), which is listed below in Listing 5.2.

int BIO_setDictionary(BIO *b, char *filename)

{

BIO_ZLIB_CTX *ctx;

FILE *f;

if(!b) return 0;

ctx = (BIO_ZLIB_CTX *)b->ptr;

// throw away previous dictionary

if(ctx ->dbuf != NULL){

OPENSSL_free(ctx ->dbuf);

ctx ->dbuf = NULL;

ctx ->dbufsize = 0;

}

f = fopen(filename , \"rb\");

// Error if the file can not be opened

if (!f)

{

COMPerr(COMP_F_BIO_ZLIB_SETDICT ,

COMP_R_ZLIB_FILEOPEN_FAILURE);

return 0;

}

fseek(f, 0, SEEK_END);

ctx ->dbufsize = ftell(f);

fseek(f, 0, SEEK_SET);

// Allocate the dictionary

ctx ->dbuf = (unsigned char *)

OPENSSL_malloc(ctx ->dbufsize +1);

72

// Read in to the buffer from the file

fread(ctx ->dbuf , ctx ->dbufsize , 1, f);

fclose(f);

return 1;

}

Listing 5.2: BIO setDictionary: allocates memory for a dictionary in the ZLIB BIO

and stores the dictionary size

When reading and writing through this BIO, a couple of modifications were made

to incorporate the dictionary using the ZLIB API. When reading in a BIO, inflate

returns a code if it needs a dictionary to inflate the data.

ret = inflate(zin, 0);

If the dictionary is needed, the dictionary buffer is checked and the ZLIB function

inflateSetDictionary called if the dictionary is found, as shown in Listing 5.3.

while (data available to inflate)

{

if(ret == Z_NEED_DICT)

{

// If no dictionary set

if (!ctx ->dbuf)

{

COMPerr(COMP_F_BIO_ZLIB_READ ,

COMP_R_ZLIB_NO_DICT_ERROR);

return 0;

}

// Give ZLIB the dictionary from the

// BIO buffer dbuf

ret = inflateSetDictionary

(zin ,ctx ->dbuf ,ctx ->dbufsize);

continue;

}

}

Listing 5.3: ZLIB inflateSetDictionary

73

If writing out a ZLIB BIO with a dictionary, deflateSetDictionary(zout, ctx->dbuf,

ctx->dbufsize) is called before writing any data to set up the preplaced dictionary.

The major modifications for these changes are in the OpenSSL source directory in

crypto/comp/c zlib.c.

5.2.3 Extending the CMS CompressedData Type

Few changes are required to support dictionaries in the CompressedData structure.

Two new library functions are defined in cms.h:

CMS_ContentInfo *CMS_compress_dict(BIO *in, char *dictionary ,

const EVP_MD *md, unsigned int flags)

int CMS_uncompress_dict(CMS_ContentInfo *cms , char *dictionary ,

BIO *dcont , BIO *out , unsigned int flags)

CMS_compress_dict takes the input, dictionary path, message digest structure, and

output flags and creates a new CMS_ContentInfo. The function CMS_uncompress_dict

uses the CompressedData structure, a path to a dictionary, an output BIO, and flags

to reverse the process. It returns a code indicating success and stores uncompressed

data in the output BIO. These two functions are listed below in Listing 5.4 and

Listing 5.5.

CMS_ContentInfo *cms = NULL;

CMS_ContentInfo *digestedDict = NULL;

CMS_CompressedData *cd = NULL;

BIO *dict;

dict = BIO_new_file(dictionary , "r");

digestedDict = CMS_digest_create(dict , md , flags);

cms = cms_CompressedData_create(NID_zlib_compression);

cd = cms ->d.compressedData;

cd->dictionaryAlgorithm = X509_ALGOR_new ();

if (!md)

74

md = EVP_sha1 ();

cms_DigestAlgorithm_set(cd ->dictionaryAlgorithm ,md);

cd->dictionaryDigest = ASN1_OCTET_STRING_new ();

ASN1_OCTET_STRING_set(cd->dictionaryDigest ,

digestedDict ->d.digestedData ->digest ->data ,

digestedDict ->d.digestedData ->digest ->length);

cd->dict = (char *) OPENSSL_malloc(strlen(dictionary));

strcpy(cd->dict ,dictionary);

CMS_ContentInfo_free(digestedDict);

BIO_free(dict);

if (CMS_final(cms , in , NULL , flags))

return cms;

Listing 5.4: CMS compress dict

{

BIO *cont;

BIO *new;

BIO *dict;

BIO *digest;

BIO *pushed;

int r;

CMS_CompressedData *cd;

dict = BIO_new_file(dictionary , "r");

cd = cms ->d.compressedData;

new = BIO_new(BIO_s_mem ());

digest = cms_DigestAlgorithm_init_bio

(cd ->dictionaryAlgorithm);

pushed = BIO_push(digest ,new);

SMIME_crlf_copy(dict , pushed , flags);

(void)BIO_flush(pushed);

75

r = cms_CompressedData_verify(cms , pushed);

if (r == 0)

{

CMSerr(CMS_F_CMS_UNCOMPRESS_DICT ,

CMS_R_COMPRESSED_NOT_VERIFIED);

BIO_free(new);

BIO_free(dict);

BIO_free(digest);

return 0;

}

if (cd ->dict)

{

OPENSSL_free(cd ->dict);

cd ->dict = NULL;

}

cd->dict = (char *) OPENSSL_malloc

(strlen(dictionary));

strcpy(cd->dict ,dictionary);

cont = CMS_dataInit(cms , dcont);

if (!cont)

return 0;

r = cms_copy_content(out , cont , flags);

do_free_upto(cont , dcont);

BIO_free(new);

BIO_free(dict);

BIO_free(digest);

return r;

}

Listing 5.5: CMS uncompress dict

76

CMS contentType Data Included in Dictionary Data Excluded
from Dictionary

All Content Types Version numbers, contentType identi-
fiers

encapsulated content

EnvelopedData content encryption algorithm, key en-
cryption algorithm, certificate public
key identifiers, originator identifying
information, unprotected attributes

content encryption
keys

SignedData certificate public key identifiers, di-
gest algorithms, signature algorithms,
signed attributes

signatures, certifi-
cates, certificate
revocation lists

EncryptedData content encryption algorithm, unpro-
tected attributes

encrypted data

DigestedData digest algorithm digest
CompressedData compression algorithm, signer identi-

fier, key encryption algorithms
dictionary digest, con-
tent encryption keys,
key encryption keys

Table 5.1: Strings included in condensed CMS dictionary

5.2.4 Creating a Dictionary

Writing CMS Strings

To test ZLIB compression, as discussed in section 4.4.4, we need to generate a dic-

tionary of partial CMS structures. Normally, OpenSSL outputs a full DER encoded

structure using the function i2d_CMS_bio(BIO *out, CMS_ContentInfo *cms). We aug-

mented this functionality in the following function, using the OpenSSL ASN.1 API

and its CMS structures: int CMS_getStrings(BIO *out, CMS_ContentInfo *cms)

In the function, we determine which contentType the CMS structure refers to, then

write the fixed parts of the different CMS messages to the out BIO structure. Gener-

ally we define the fixed parts as version numbers, content types, algorithm definitions,

and other non user-specific data. We define the variable parts as user identifiers, sig-

natures, digests, keys, and content. All this fixed data is written in DER encoding to

the BIO structure. Table 5.2.4 shows which data is included for each content type.

We created a sample CMS message for each contentType using one sender and

one receiver for each contentType and wrote all these samples to condensed string

77

versions excluding variable data.

We also used full CMS structures in the dictionary instead of condensing them first

to non-user specific data. For both these versions, we then wrote all the structures

out to disk in a row via a file BIO. This concatenation of CMS structures or strings

is the CMS part of the dictionary.

Certificates

In order to generate a set of certificates which may be commonly referenced or trans-

mitted, we relied the methods that Internet browsers use to establish trust. Mozilla’s

Firefox [7] browser as well as Microsoft’s Internet Explorer [4] and any other major

browser all have root level certificates pre-installed in the browser to establish chains

of trust. If websites provide certificates which are signed by some chain of certificates

which eventually goes back to a root-level installed certificate, the browser assumes we

can trust that chain of certificates. Thus, information in these root level certificates

should be referenced quite frequently in many cryptographic messages.

We exported a subset of the pre-installed root level certificates as well as some

DoD root certificates from DISA all in DER encoding. These certificates were then

concatenated all together to form a certificate package.

Cutting Down on Certificate Size in the CMS Dictionary

We found that the CMS part of the dictionary was 250 bytes for CMS strings and 450

bytes for full CMS structures. However, the certificate package part of the dictionary

encompassed much much more of the space. Each certificate we included in the orig-

inal dictionary took around 1024 bytes. When the size of the dictionary is limited to

32KB of data, that means 32 certificates can be stored in the dictionary. Considering

the large number of certificates available even in the Internet browser, this is a serious

limitation. Thus, we considered as an optimization, parsing out just the issuer names

of the certificates since the issuer name is sent to identify which certificate was used

in signing or encrypting in SignedData and EnvelopedData structures. We could’ve

also included other fields common to many certificates, such as algorithm types. We

78

then made a certificate package of just these issuer names. Each issuer name only

accounted for 5̃0 bytes of space compared to the 1024 bytes used before. This means

that we could fit about 640 certificates in the certificate part of the dictionary instead

of 32, a 20x improvement. A dictionary was then constructed with just issuer names.

Later, in section 6.3 we explore the performance associated with each dictionary type.

Putting it Together

Partial CMS strings and the certificate package were concatenated together to form a

full ZLIB dictionary for CMS. The dictionary is preplaced and used in BIO_setDictionary

to compress and uncompress CMS messages. The total sizes of the dictionaries were

kept under 32KB in order to stay under the limit imposed by ZLIB, as discussed in

section 4.4.

5.3 CMS Lite

We just described extensions to OpenSSL for creating a CMS CompressedData type,

and the methodology used to generate a CMS-specific dictionary. This section details

some of the structures and functions used to create a CMS Lite data type, which

uses content-aware compression to reduce CMS overhead. We also detail how an

implementor can extend this work and use the library code in OpenSSL to create

other types. For each part we will look at the high-level functionality of the code,

then give some code snippets which should help an implementor understand the low-

level details. We will first describe some requirements for the code, then discuss how

we created an ASN.1 type for CMS Lite in OpenSSL. We then describe the encoding

and decoding processes and summarize.

5.3.1 Requirements

CMS Lite is meant to trade off some of the flexibility afforded by ASN.1 notation

and CMS for a reduction in message size. In addition, the implementation meets the

79

requirements specified in section 4.3 (recoverable, flexible, extendable, and simple to

implement) by adhering to the following:

• Copy user-specific data: Data which is used once per message, such as a content

encryption key or initialization vector, must be copied straight from the CMS

message to the CMS Lite message. Signatures and encrypted data must also be

copied byte for byte.

• Use ASN.1 API: The current CMS implementation uses the OpenSSL ASN.1

API to perform input/output and allocation operations on data structures.

Reuse of these functions allows our code to rely on well-tested code.

• Encode and decode: Encoding and decoding between CMS Lite and CMS

content types requires different encoding and decoding functions for each type.

• Adding algorithms: Combinations of algorithms should be easy to add to the

implementation.

5.3.2 Adding ASN.1 Types for the CMS API

This section details how we used the ASN.1 syntax and API to create a CMS Lite

type. The overview will help elucidate our CMS Lite extension.

ASN.1 Notation

ASN.1 describes a method of representing data in two ways. First, it separates the

way the data is encoded from how it is sent. The ITU standard X.209 defines the

methods of encoding data, of which two are Distinguished Encoding Rules (DER) [22]

and XML Encoding Rules (XER) [20]. DER specifies data as a series of triplets of

data type, length, then value while XER specifies each data type as an XML tag with

the content inside the tag.

The second part of the ASN.1 standard involves the notation of data. In ITU

standard X.208 [21]the basic syntax for ASN.1 structures is defined. Some of the

common terms used in ASN.1 are SEQUENCE which means that a series of data is

80

next. The OCTET STRING type identifies an eight-bit byte string of data. Some other

common types are INTEGER which defines a byte representation of an integer, and a

BOOLEAN which defines a 0 or 1 value. CMS definitions contain several terms with

ASN.1 data qualifiers. The OPTIONAL qualifier means that the data element may not

be included while SET OF means that there is a grouping of multiple pieces of a data

type. The CHOICE qualifier means that one of the following pieces of data is chosen,

UNION means that a set of the options is chosen. These types are all used in the CMS

definitions set in RFC 3852 [35].

OpenSSL ASN.1 API

The OpenSSL ASN.1 API attempts to abstract away the details of how the different

data structures for each ASN.1 object are created and allow the developer to use a

syntax similar to the one used in defining ASN.1 objects. The Table 5.2 shows some

of the useful functions for defining new ASN.1 structures. All these functions are

accessible through the OpenSSL header files path/base.

Function Description

ASN1 SEQUENCE Define a named sequence of data types. This connects a
previously defined C structure to this ASN.1 type name.
Both must have matching data types in order to cor-
rectly store the data

ASN1 CHOICE Define a CHOICE data element
ASN1 SIMPLE Create a simple ASN1 Object
ASN1 IMP Creates an IMPLICIT object
ASN1 IMP SET OF Creates a SET OF a data type
AN1 OPT OPTIONAL data added to a sequence
DECLARE ASN1 ITEM Allows a previously defined sequence or item to be used.

Also defines allocation and encoding/decoding functions
for the item using the ASN.1 library

DECLARE STACK OF Defines allocation, push and pop, and free functions for
a safe stack implementation of an ASN.1 type

Table 5.2: OpenSSL ASN.1 library functions

81

CMS Lite Definitions

We liberally used the OpenSSL ASN.1 API in order to create the CMS Lite definitions

and modify the CMS implementation to include a CMS Lite structure. We called this

new data type LiteData and it is defined as a top-level contentType under CMS. Its

CMS implementation is shown in Listing 5.6. It is defined as a choice of parameters

representing the other contentTypes. This ASN.1 definition then matches with the

designed data type shown in Listing 4.1. Similar ASN.1 structures were created for

every other type of transforms shown in section 4.5.3. The full ASN.1 definitions for

these structures are in crypto/cms/cms asn1.c in our modified OpenSSL imple-

mentation. They are also listed in Appendix A.

ASN1_CHOICE(CMS_LiteData) = {

ASN1_IMP(CMS_LiteData , params.signedParams ,

CMS_Signed_params , 0),

ASN1_IMP(CMS_LiteData , params.envelopedParams ,

CMS_Enveloped_params , 1),

ASN1_IMP(CMS_LiteData , params.digestedParams ,

CMS_Digested_params , 2),

ASN1_IMP(CMS_LiteData , params.encryptedParams ,

CMS_Encrypted_params , 3),

ASN1_IMP(CMS_LiteData , params.authenticatedParams ,

CMS_Authenticated_params , 4),

ASN1_IMP(CMS_LiteData , params.compressedParams ,

CMS_Compressed_params , 5)

} ASN1_CHOICE_END(CMS_LiteData)

Listing 5.6: CMS LiteData

5.3.3 Encoding and Decoding

Encoding and decoding through the CMS Lite implementation is done through two

functions, CMS_LiteEncode(CMS_ContentInfo *message) and CMS_LiteDecode(CMS_ContentInfo

*message, STACK_OF(CMS_RecipientInfo)*recipients) LiteEncode takes normal CMS mes-

sages stored in message and returns a LiteData structure which is the encoded

82

message. LiteDecode takes the encoded message and a stack of X.509 [37] certifi-

cates which represent the possible recipients of the message and decodes the message

into a normal CMS message. Encoding and decoding functions are all written into

crypto/cms/cms lite.c.

Because each CMS contentType is very different in its makeup compared to other

CMS contentTypes, each structure must have a separate encoding and decoding

function. We implement the changes described in section 4.5.3 using the ASN.1

functions that are defined for each ASN.1 data type. We use these functions to

allocate and set the values for the CMS Lite ASN.1 structures.

SignedData

For SignedData we copy any content over from the CMS structure and allocate

and define a Signed params structure. Each SignerInfo in the normal structure

is handled separately by the function CMS_SignerInfo_params_init. It converts all the

normal structure’s SignerInfo structures into SignerInfo params structures, elim-

inating overhead for each structure. Below we give the code snippets for encoding

and decoding SignedData.

CMS_LiteData *CMS_LiteEncode_Signed

(CMS_ContentInfo *message , CMS_ContentInfo *cms)

{

CMS_SignedData *sd;

CMS_LiteData *ld;

CMS_Signed_params *sp;

ASN1_OCTET_STRING **data;

int ret;

sd = message ->d.signedData;

// Create the LiteData structure and set pointers to it

ld = cms_LiteData_create(cms);

sp = cms_LiteSign_create(ld);

// Replace the contentType object with an integer.

83

sp->contentType =

(encodeAlgorithm(sd->encapContentInfo ->eContentType)

<< CMS_CONTENTTYPE_SHIFT);

sp->version = sd->version;

data = CMS_get0_content(message);

// Allocate and copy the data from the SignedData

if (sp ->eContent)

{

M_ASN1_OCTET_STRING_free(sp ->eContent);

sp ->eContent = M_ASN1_OCTET_STRING_new ();

}

else

{

sp ->eContent = M_ASN1_OCTET_STRING_new ();

}

ASN1_STRING_set(sp->eContent , (*data)->data ,

(*data)->length);

// Transform each SignerInfo into SignerInfo_params

ret = cms_SignerInfo_params_init(sd ,sp);

if (ret ==0)

goto mallerr;

// return a pointer to the LiteData part of the

// created CMS message

return cms ->d.liteData;

}

Listing 5.7: Encoding SignedData

int cms_SignerInfo_params_init(CMS_SignedData *sd ,

CMS_Signed_params *sp)

{

STACK_OF(CMS_SignerInfo) *sis;

STACK_OF(CMS_SignerInfo_params) *sps;

CMS_SignerInfo *si;

84

CMS_SignerInfo_params *sip;

X509_ATTRIBUTE *attr;

X509_ATTRIBUTE *dup;

int i;

int digestParam = 0;

int signParam = 0;

sis = sd ->signerInfos;

sps = sp ->signerInfos;

// Iterate through the stack of SignerInfo

for (i=0;i<sk_CMS_SignerInfo_num(sis);i++)

{

// Stack accessing functions

si = sk_CMS_SignerInfo_value(sis ,i);

// ASN.1 allocation for the new type made possible

// by DECLARE_ASN1_ITEM(CMS_SignerInfo_params)

sip = M_ASN1_new_of(CMS_SignerInfo_params);

// store the hash of the issuer and serial number

sip ->sidHash =

cms_getSignerIdentifier_hash(si->sid ,EVP_md5 ());

sip ->type = si ->sid ->type;

... Copy over the signature ...

// Encode the signature and digest algorithms

// into integers , which are combined later

signParam =

encodeAlgorithm(si->signatureAlgorithm ->algorithm);

digestParam =

encodeAlgorithm(si->digestAlgorithm ->algorithm);

// Bit shifts the data to store both parameters

// in one integer

85

sip ->parameter = (signParam <<

CMS_SIGNATUREALG_SHIFT) +

(digestParam << CMS_DIGESTALG_SHIFT);

... copy over signed attributes here ...

// Push the new structure onto the

SignedData_params

if (! sk_CMS_SignerInfo_params_push(sps ,sip)

... deallocate if failure ...

}

return 1;

}

Listing 5.8: Encoding SignedData continued

int CMS_LiteDecode_Signed(CMS_ContentInfo *message ,

CMS_ContentInfo *cms , STACK_OF(X509) *recipients)

{

CMS_LiteData *ld;

CMS_Signed_params *sp;

CMS_SignedData *sd;

STACK_OF(CMS_SignerInfo_params) *sips;

CMS_SignerInfo_params *sip;

CMS_SignerInfo *si;

int i,ret = 0;

int contenttype =0;

... allocate all the data structures ...

// find the contentType from the parameter

contenttype = (sp->contentType & CMS_CONTENTTYPE_MASK) >>

CMS_CONTENTTYPE_SHIFT;

sd->encapContentInfo ->eContentType =

getContentTypeFromParam(contenttype);

86

... copy over the encapsulated data ...

sips = sp ->signerInfos;

// Iterate through the SignerInfo_params

// to recreate SignerInfos

for (i=0;i< sk_CMS_SignerInfo_params_num(sips);i++)

{

sip = sk_CMS_SignerInfo_params_value(sips ,i);

si = M_ASN1_new_of(CMS_SignerInfo);

ret = cms_liteDecode_signer(sip , si , recipients ,

sd);

}

ret = 1;

return ret;

}

Listing 5.9: Decoding Signed params

int cms_liteDecode_signer(CMS_SignerInfo_params *sip ,

CMS_SignerInfo *si , STACK_OF(X509) *signers , CMS_SignedData *sd)

{

X509 *recip = NULL;

X509_ATTRIBUTE *attr;

X509_ATTRIBUTE *dup;

X509_ALGOR *alg;

int digestAlg = -1;

int signatureAlg = -1;

int i;

// Compare our certificates signerIdentifier hashes

// against the one in the message. Returns the certificate

// which matches

if ((recip = cmp_issuer_and_serial(signers ,

sip ->sidHash)) == NULL)

87

return 0;

... copy over the signerIdentifer data from the

certificate ...

... copy over the signature here ...

// get the digest and signature algorithms

// from the parameter

digestAlg = (sip ->parameter & CMS_DIGESTALG_MASK)>>

CMS_DIGESTALG_SHIFT;

signatureAlg = (sip ->parameter & CMS_SIGNATUREALG_MASK) >>

CMS_SIGNATUREALG_SHIFT;

si->digestAlgorithm = getDigestFromParam(digestAlg);

si->signatureAlgorithm =

getSignatureAlgFromParam(signatureAlg);

... copy over the signed attributes ...

... push the digest algorithms on the stack ...

return 1;

}

Listing 5.10: Decode Signed params continued

EnvelopedData

In order to decode and encode the EnvelopedData structure, we use the ASN.1

functions just like we did in encoding and decoding SignedData. Again, we flat-

ten the normal data structure, taking out the encrypted data. However, we found

that we needed to simply copy over the contentEncryptionAlgorithm from the nor-

mal structure to the encryptAlg data field instead of creating a parameter for it.

This is because, the contentEncryptionAlgorithm stores the initialization vector

88

for symmetric encryption algorithms if one is needed. In encoding and decoding

EnvelopedData, the RecipientInfo structures are handled separately through the

function CMS_LiteEnvelopedRecipient_init. We again include some functions as we did

for SignedData in Listings 5.11 and 5.12.

CMS_LiteData *CMS_LiteEncode_Enveloped

(CMS_ContentInfo *message , CMS_ContentInfo *cms)

{

CMS_LiteData *ld;

CMS_EnvelopedData *env;

CMS_Enveloped_params *envparams;

ASN1_OCTET_STRING **data;

int keytransencrypt = 0;

int symmetrickey = 0;

int encryptedcontent = 0;

if (cms ->d.other == NULL)

{

... allocate the structures and set the pointers ...

// Copy the encryption algorithm to encryptAlg

envparams ->encryptAlg = X509_ALGOR_dup

(env ->encryptedContentInfo ->

contentEncryptionAlgorithm);

// table lookup for the algorithms used

symmetrickey = encodeAlgorithm(env ->

encryptedContentInfo ->contentEncryptionAlgorithm ->

algorithm);

encryptedcontent

= encodeAlgorithm(env ->encryptedContentInfo ->

contentType);

... copy encrypted data over ..

89

// Copy appropriate data from the message recipient

// infos to the litedata infos

// Only handles KeyTransport recipient infos as OPENSSL

// doesnt handle anything but this type as well.

cms_LiteEnvelopedRecipient_init(message ,

envparams ,& keytransencrypt);

// set the version and the parameter for

// enveloped lite data

envparams ->version = env ->version;

envparams ->parameter = (encryptedcontent <<

CMS_CONTENTTYPE_SHIFT) +

(keytransencrypt << CMS_KEYTRANSPORT_SHIFT)

return cms ->d.liteData;

}

}

Listing 5.11: Encoding EnvelopedData

int cms_LiteEnvelopedRecipient_init(CMS_ContentInfo *cms ,

CMS_Enveloped_params *envparams , int *enc)

{

STACK_OF(CMS_RecipientInfo) *ris;

STACK_OF(CMS_Recipient_params) *rps;

CMS_RecipientInfo *ri;

CMS_Recipient_params *rp;

CMS_KeyTransParams *ktp;

CMS_KeyTransRecipientInfo *ktri;

int i;

... set up the pointers ...

90

for (i = 0;i < sk_CMS_RecipientInfo_num(ris); i++)

{

ri = sk_CMS_RecipientInfo_value(ris , i);

ktri = ri->d.ktri;

rp = M_ASN1_new_of(CMS_Recipient_params);

rp ->d.ktp = M_ASN1_new_of(CMS_KeyTransParams);

ktp = rp ->d.ktp;

ktp ->version = ktri ->version;

rp ->type = CMS_RECIPINFO_TRANS;

// get the hash for the signeridentifier (md5)

ktp ->sidHash =

cms_getSignerIdentifier_hash(ktri ->rid ,EVP_md5 ());

...set the type of the signerIdentifier

... copy the encrypted key over ...

// replace the encryption algorithm with an

integer

if (enc)

*enc = encodeAlgorithm(ktri ->

keyEncryptionAlgorithm ->algorithm);

... push the lite recipient parameter on the

stack

}

return 1;

Listing 5.12: Encoding EnvelopedData continued

Other CMS types

The same concepts were applied to the other CMS contentTypes in order to encode

and decode to and from those types into a LiteData structure. We will not include

91

code snippets from those because their structures are similar, and in some cases,

more simple. We did not attempt to encode and decode the AuthenticatedData

structure into CMS Lite. This was because the OpenSSL implementation of the

CMS library did not have a function to create AuthenticatedData. The encode and

decode functions for the CompressedData, DigestedData, and EncryptedData types

is in crypto/cms/cms lite.c.

5.3.4 Summary of CMS Lite

We updated the CMS API to enable it to transform normal CMS structures into Lite

structures and back again. We added restrictions with this Lite type by limiting algo-

rithms and hashing the issuer name and serial numbers identifying X.509 certificates.

In order to decode the CMS Lite structure we check all our known certificates to find

the one that corresponds to each issuer name and serial number. We also were limited

by the implementation of the CMS in OpenSSL. Not all the functions and types in

the latest CMS RFC [35] are implemented in OpenSSL; Only one key management

technique is implemented and there is no function to created the AuthenticatedData

data type. However, our extended CMS Lite implementation decodes and encodes all

the structures supported by OpenSSL.

92

Chapter 6

Evaluation

In the previous chapter, we described extensions that incorporate ZLIB compression

with preplaced dictionaries and a new CMS Lite type into the OpenSSL library. We

included code snippets and discussed which OpenSSL APIs supported the implemen-

tation.

This chapter describes a performance evaluation of how CMS Lite and ZLIB dic-

tionary compression affect CMS message size. To show our results, we first detail our

test infrastructure and our test data. We then compare the optimization methods

against each other, discuss results, and assess their message size overheads as men-

tioned in section 4.1. Finally, we offer conclusions and recommendations on using

these methods to optimize CMS.

6.1 Testing Infrastructure

In order to encrypt and sign messages using CMS, a sender and a recipient must

be defined. In many cases, entities sending and receiving messages use the PKI in

order to attach cryptographic information to a user’s identity. Public key certificates

are generated for every entity that wishes to participate in signed and/or encrypted

communications. The OpenSSL CMS API uses X.509 certificates to sign or encrypt

EnvelopedData, SignedData, EncryptedData, and AuthenticatedData. Thus, in

order to test the performance of our API extensions, we used X.509 certificates for

93

dummy entities created using a plugin developed for the program Pidgin [10].

We also needed a method for storing and retrieving certificates during test runs.

Authenticated Statement Exchange (ASE) uses a database for each user to store

previously transmitted certificates along with other information, so we included it in

our software implementation.

Finally, we needed a platform on which to create and use the CMS API. Since

ASE also uses OpenSSL in order to perform cryptographic operations, we leveraged

ASE to access user information and use our CMS API by writing a custom CMS API

wrapper for ASE.

6.2 Test Methodology

To test our CMS Lite and preplaced dictionary methods, we first created different

types of CMS messages using OpenSSL’s standard CMS API. Table 6.1 shows which

functions were used to create the different types. All the functions and algorithms

we used can be found in crypto/cms/cms.h in OpenSSL.

For EnvelopedData tests, we sent an enveloped message to each of our dummy

users: Alice, Bob, Carol, Eve, and Mallory. Each message contained one recipientInfo

structure with a key encrypted to the user. The average size of these messages was

used as the measurement for EnvelopedData messages. Similarly, for SignedData

messages we made structures signed by each dummy user and again averaged the

optimization results. After the normal CMS structures were created, we used the

i2d CMS bio function discussed in section 4.4.4 to DER encode the structures. Then,

we used the various preplaced dictionaries described in section 4.3 to compress these

packages.

To test CMS Lite, we encoded the CMS structures in CMS Lite and then used

i2d CMS bio to DER encode the CMS Lite structure. The size of the DER encoded

message was used as the message size. We additionally decoded the CMS structure

and ensured that the encapsulated data sent inside the package was intact and that

the CMS structure that was recreated could be used in the same manner as the

94

CMS structure Function used Algorithms Used

EnvelopedData CMS encrypt(STACK OF(X509) *certs,

BIO *in, const EVP CIPHER *cipher,

unsigned int flags)

Key Transport mode-RSA
Encryption, AES-256-CBC
mode

SignedData CMS sign(X509 *signcert, EVP PKEY

*pkey, STACK OF(X509) *certs, BIO

*data, unsigned int flags)

RSA-Signatures, SHA-1 di-
gest

DigestedData CMS digest create(BIO *in, const

EVP MD *md, unsigned int flags)

SHA-1 digest

EncryptedData CMS EncryptedData create(BIO *in,

const EVP CIPHER *cipher, unsigned

int flags)

AES-256-CBC mode

CompressedData *CMS compress(BIO *in, int comp nid,

unsigned int flags)

ZLIB compression

Table 6.1: Functions used to create CMS messages

original.

We also tested our ideal and worst-case conditions. The ideal conditions we sim-

ulated by creating the same type of CMS message with differing payloads and com-

pressing those messages one at a time without flushing the dictionary in between.

We simulated the worst case conditions by simply using ZLIB compression without

any previous messages or a preplaced dictionary. For both these tests, the structures

were DER encoded.

6.3 Results

6.3.1 Dictionary Comparisons

We now compare ZLIB with preplaced dictionaries to CMS Lite. First, Figure 6-1

shows the ZLIB compression savings when using different dictionaries.

The compression savings are greatest for SignedData and EnvelopedData mes-

sages. The best dictionary in compression was one created by concatenating the full

CMS structures with root certificates. The worst dictionary at compression was the

one containing CMS strings taken from full structures, though its performance is very

close to the others.

95

Figure 6-1: ZLIB compression comparing dictionaries

We then accounted for the 256 byte CEK, 256 byte signature, message payload,

and 16 byte digest which all must be recreated perfectly to preserve CMS functionality.

Since the rest of the CMS structure acts as metadata, we called it message overhead.

We found that the best dictionary was compressing 270 bytes of overhead to 85 bytes

in SignedData and 200 bytes to 85 bytes in EnvelopedData. These represent a savings

of nearly 190 bytes per message. The worst dictionary still resulted in a savings of

170 bytes for SignedData and 70 bytes for EnvelopedData. Figure 6-2 shows these

overhead sizes.

We also show the percentage of the non-CEK/signature/digest related overhead

which is compressed by each dictionary. Figure 6-3 shows the best dictionary, Full

+ Certs, was able to compress nearly 70% of SignedData overhead and 60% of

EnvelopedData overhead. Table B.2 in Appendix B shows the full data results for

dictionary compression.

6.3.2 CMS Lite Comparsion

We also show the effect that the CMS Lite optimizations had on the message size

of the structures. CMS Lite achieves some message overhead compression on all

96

Figure 6-2: Overhead comparison after compression w/dictionaries

CMS structures. The largest reduction in message size occurs with SignedData and

EnvelopedData structures. CMS Lite reduces 120 bytes of SignedData overhead and

100 bytes of EnvelopedData overhead. These results are shown in Figures 6-4 and

6-5 and in Table B.4 in Appendix B.

We also show in Table 6.2 the percentage compression of the non-key/signature/digest

overhead for each CMS structure.

SignedData EnvelopedData DigestedData CompressedData EncryptedData

43.1 48.9 67.4 12.2 27.5

Table 6.2: CMS Lite overhead compression percentage

97

Figure 6-3: Overhead percentage compression w/dictionaries

6.3.3 Total Results

We finally compared the best dictionary results to the tests simulating the ideal and

worst-case conditions. We expect to fall somewhere in between these two results,

but hope to be closer to the ideal. We also compare CMS Lite to these results

as well. We chose to only show the SignedData and EnvelopedData structures as

these contained the most significant savings throughout the study. As you can see

in Figure 6-6 the original messages do benefit from ZLIB compression without any

optimizations. However, the added dictionary produces results closer to the ideal

conditions test. CMS Lite performed better than ZLIB without a dictionary, but

ZLIB with a preplaced CMS dictionary performed better than CMS Lite. In Figure 6-

7 we see that the overhead reduction due to ZLIB compression and CMS Lite in fact

is nearly the compression achieved with best case conditions. Overhead reduction

using ZLIB without a dictionary is less than 30 bytes for EnvelopedData and less

98

Figure 6-4: CMS Lite optimizations

than 70 bytes for SignedData, however it increases to 110 and 190 bytes respectively

with a good preplaced dictionary. The full data set of results is available in Appendix

B.

6.4 Discussion

In this section we discuss why we saw the results above and evaluate the different

methods of optimizing CMS according to the requirements of each solution to be

recoverable, flexible, extensible, and simple as described in section 4.3.

6.4.1 ZLIB with Dictionary Compression

Adding a preplaced CMS dictionary allows ZLIB to use references to previously loaded

data, allowing for better compression. We found that the best dictionary used was

one with full CMS structures and certificates concatenated as described in section

4.4.4. The full CMS structures have all the structures which are sent to the user,

99

Figure 6-5: CMS Lite overhead size

allowing ZLIB to reference rather than output strings 1. To further reduce messsage

size, the preplaced dictionary could be optimized for CMS structures by aligning the

dictionary strings in more efficient ways for ZLIB to find and reference them.

Using a dictionary with ZLIB compression does add a problem in message recov-

erability. To use a dictionary with ZLIB compression, all message recipients must

possess the exact dictionary used during compression. They must also determine

which of the many possible dictionaries to use in uncompressing the CMS structure.

However, since a dictionary is a long-lived, public data item, it could be preplaced or

downloaded from a network accessible repository and referenced by a unique identifier

sent with the CMS message.

Since ZLIB compression does not affect the contents of the CMS data, it is flexible

with any changes that occur in CMS. In terms of extensibility, if CMS is extended,

1We expect the actual performance of the dictionary to be a few bytes worse than the best
dictionary’s performance as we used messages sent to dummy user Alice in order to create the
dictionary and also used Alice in testing the dictionary. Thus, we were able to re-use some of her
certificate identifying information, which would not be possible if a canonical dictionary was used
by all users.

100

Figure 6-6: All optimizations compared to best and worst case conditions

then a new dictionary can be optimized for the changed structures. The only problems

would arise in distributing the new dictionary to all participants in optimized CMS

communications.

Implementing the ZLIB optimization was simple. Our extensions to the OpenSSL

implementation of CompressedData required only about 350 lines of code change.

Building the dictionary was not too difficult either. We implemented custom functions

to extract literals from each CMS structure, which required around 300 lines of code

change. We then were able to use the CMS library functions to create the CMS

structures for the dictionary. To get certificates, we easily downloaded certificates

from our dummy store and from the Mozilla web browser and the DoD root certificate

webpage. We assembled the combinations of dictionaries quickly with cat.

6.4.2 CMS Lite

CMS Lite was able to transform normal CMS structures and save data by eliminating

specifiers for certificates, objects, and algorithms while replacing them with shortened

101

Figure 6-7: All optimizations overhead sizes

parameter values. One optimization that reduced a significant amount of overhead

was replacing certificate’s issuer name and serial numbers with a SHA-1 hash of their

combination. This eliminated around 60 bytes of overhead, but also presented further

challenges. Because of this change, CMS Lite messages do not enable the recipient

to identify the certificates used in the message. However, if the recipients have all

the certificates used in the message, then they can iterate through their certificates

to find the ones in the message. We also believe that CMS Lite could be further

optimized, reducing message size. This could be done by reducing more of the data

in CMS Lite into a parameter by using stricter guidelines what configurations can be

used.

CMS Lite can be fully recoverable just like ZLIB compression, however adding

extra attributes to CMS structures unknown to CMS Lite would not result in these

attributes being reduced in size. Also, because CMS Lite supports a reduced set of

configurations, some optional data in CMS may not be recoverable after being trans-

formed to CMS Lite. In terms of flexibility, CMS Lite can support any algorithms

102

with some modifications and can be extended to support any changes to CMS. These

changes would take more implementation work than creating a new dictionary, how-

ever. CMS Lite is simple in concept, but can be more difficult to code in OpenSSL

as we had to deal with ASN.1 parsing and more OpenSSL code.

6.4.3 Wrap Up

We showed the results for both CMS and CMS Lite and then compared the two

methodologies according to our requirements. Table 6.3 shows these results.

Requirement ZLIB w/dictionary CMS Lite

Recoverability high - must distribute dictionary medium - CMS Lite must be
used to decode the message and
some optional data not recovered

Flexibility high - does not depend highly on
CMS options used to CMS

low - can only support subset of
algorithms and options

Extensibility medium - new updates to CMS
can be incorporated into a new
dictionary

medium - Can support any up-
dates to CMS, but must change
CMS Lite to implement these
changes

Simplicity high - dictionary must be present
with both sender and recipient

medium - implementation of all
changes in OpenSSL

Table 6.3: Evaluating ZLIB compression w/dictionary and CMS Lite

6.5 Conclusion

Both CMS Lite and ZLIB compression offer benefits over simple ZLIB compression

in a disadvantaged network. Our use of general purpose compression with preplaced

dictionaries reduced overhead by 110 bytes per EnvelopedData message, nearly 60%

of the overhead. For SignedData the overhead was reduced by 190 bytes for a 70%

compression ratio. This was only about 30 bytes less reduction than the optimal

compression test assuming a non-disadvantaged network. CMS Lite also performed

respectably, achieving a 48% compression ratio for overhead on EnvelopedData struc-

tures and 43% compression ration for SignedData structures. In comparison, general

103

compression without our optimizations only compressed 30 bytes of overhead for

EnvelopedData messages and 60 bytes for SignedData messages, resulting in com-

pression ratios of 14 and 23 percent respectively.

However, both methods have a couple of drawbacks. ZLIB compression with a

dictionary requires the dictionary to be preplaced to compress and uncompress the

message. CMS Lite requires a complex implementation at the message sender and

recipient. Both could be implemented with a proxy in between users as shown in

Figure 4-7. However, because of its greater simplicity, flexibility, and recoverability

we believe ZLIB compression with preplaced dictionaries to be a better solution. ZLIB

compression may be optimized further by improving the placement of CMS strings

in the dictionary while CMS Lite could be improved by creating strict configurations

which flatten CMS more and combine more CMS algorithms and content types into

a parameter. Although ZLIB compression with a dictionary may be a better solution

in our study, CMS Lite is worth exploring, as it does offer a possibility of the best

message overhead compression.

104

Chapter 7

Extensible Messaging and Presence

Protocol (XMPP) Optimizations

for Disadvantaged Networks

In the previous chapters we discussed the implementation of ZLIB general purpose

compression with a prepended dictionary in OpenSSL as well as the implementation

of a content-aware compression CMS structure, CMS Lite. We discussed the testing

infrastructure we set up to examine these optimizations and compared the results

that these optimizations had on reducing the size of CMS messages.

We now describe a self-contained chapter which again follows our goals outlined in

Chapter 1. We again attempt to optimize standardized message protocols for secure

group communications. However, we now transition to another standardized form

of communication, XMPP [52]. XMPP is an XML-based protocol derived from the

open source Jabber protocol. XMPP has been adopted as a message packing protocol

in the open source community using XML stanzas to deliver chat, video, and other

content. We explore XMPP because although CMS can be used to create crypto-

graphic structures, we wished transfer our standard optimizations and extensions to

a higher layer, to enable standard cryptographically packaged information to be used

on disadvantaged networks in applications such as chat.

To optimize XMPP for secure group communications in disadvantaged networks,

105

this chapter offers methods to mitigate these problems by extending XMPP to en-

able and optimize the passing of group end-to-end secure messages and adding an

optimization to reduce the overhead of setting up secure group communications on

XMPP. We wrote and implemented specifications to package group-encryption data

and authenticating information via XMPP. These optimizations and protocol addi-

tions can be used on a XMPP chat client and a XMPP chat server, but can also be

extended to any client and server which implements the XML and XMPP standards.

These changes present a standardized method for passing group secure messages and

metadata in XMPP and reduce the amount of XMPP overhead. We present these

changes as another example of an optimization to a standardized message structure

for secure group communications on disadvantaged networks.

7.1 Motivation

Normally, secure communications in chat programs have been accomplished through

TLS connections created between server and user and from server to server [30].

However, the cost of establishing TLS connections can be be to high in networks with

low bandwidth, high latency, and intermittant connectivity. This is because a TLS

handshake must be performed from every server to server and user to server link.

One way of mitigating the costs of encryption on disadvantaged networks is

through the use of end-to-end encryption. When encryption is accomplished at the

endpoints, the encrypted messages can be sent from server to server without estab-

lishing costly TLS connections. Also, with end-to-end security, no servers can access

the content of the messages, only members in the encryption groups, adding another

layer of security to the communications.

Currently XMPP has a specification for sending end-to-end encrypted messages

from one user to another singular user [51]. There is no current standard for the use

of group end-to-end messages in XMPP or in other protocols, which leads to inef-

ficient implementation of end-to-end encryption with XMPP. Also, the mechanisms

for sending XMPP messages to different users are not as efficient as they could be,

106

especially when sending information needed to make encryption possible.

7.2 XMPP Background

XMPP’s core was invented in 1998 and refined by the Jabber open-source community.

It is based on XML structures and used to send real-time data. Although the core was

defined in 2004 by IETF standards, the protocol is continually updated through the

XMPP Standards Foundation (XSF) by means of XMPP Extensions. The core pro-

tocol has been updated to include instant messaging, presence protocols, multimedia

streams, encrypted streams, and the sending of XML data [52].

The closest extensions available to send secure group messages are the end-to-

end encryption extension [51], the S/MIME Encryption [47] protocol for XMPP,

and the use of XML streams and TLS within XMPP [30]. However, none of these

schemes are optimized for disadvantaged networks as they require multiple rounds of

communication for TLS and XML streams and the sending of multiple certificates in

S/MIME.

7.3 XMPP Extensions

XMPP Extension Protocols (XEPs) are the way that XMPP is extended with new

capabilities. As of August 17, 2009 there were 271 extensions proposed to XMPP.

To enable efficient group security, we propose two XMPP extensions, one for group

end-to-end encryption and the other for subset addressing in multi-user chat. Draft

extensions can be submitted according to the policy defined by the XMPP Standards

Foundation to the XMPP Extensions Editor. They gain approval through the XMPP

Council after a community driven approval and implementation process [18].

To extend XMPP to support group end-to-end encryption, we recognized the

requirements for group encryption protocols and then develop a protocol on XMPP

that satisfies these requirements. For subset addressing we identify the shortcomings

with the current multi-user chat protocol and define ways to increase its efficiency.

107

7.3.1 Secure Group Messages Requirements

A group encryption protocol must achieve security through confidentiality, integrity,

and authentication while also being interoperable and efficient. These qualities are

defined below.

Confidentiality

Any member in the current chatroom and in the current encryption group must

be able to decrypt and view a message sent to the chatroom. Each user may create

encryption groups depending on who they wish to encrypt messages. Entities without

membership to the encryption group of a message must not be able to decrypt the

messages even if they are a member of the chatroom. Encrypting to existing chatroom

membership might be a reasonable approach to maintaining confidentiality. In some

cases, it might be desirable to include a server in the group. In those cases, the server

could include itself in the chatroom membership as a user and users could choose to

include the server in encryption groups just as they would include other users.

Integrity

The integrity of each message sent in an end-to-end encryption protocol is important

because the transmission medium between the endpoints of each message is expected

to be insecure. If no integrity checks are made, an attacker can modify the contents of

a sent message in order to compromise the security of the encrypted communications.

A message digest such as (SHA-1/2, MD5, etc.) [45] [48] should be included in the

message in order to verify the integrity of the message.

Authentication

Each party to a conversation must have some method to cryptographically verify

the authenticity of a message (note that this does not preclude the source from be-

ing anonymous, nor the source from being any member of a particular group, i.e.,

group-authentication). Such authentication requires that users share cryptographic

108

material. In groups, users could accomplish this by authenticating to every other user

separately. We use the sample users Alice, Bob, Carol, and Dave all participating in

a secure group chatroom to illustrate: (Alice must authenticate to Bob, Carol, and

Dave) and (Bob must authenticate to Alice, Carol, and Dave). Users alternatively

could choose to delegate authentication to other entities (other users/servers).

A database may be used in order to store authentication information and to store

bindings between XMPP IDs and identifying information. There is a problem of ver-

ifying that a digital identity corresponds to a real, valid, trusted user. Group encryp-

tion protocols may rely on public key infrastructures, webs-of-trust, key-continuity,

and/or any other mechanism to provide such assurances.

Flexibility

The protocol must be upgradeable given the changing nature of cryptographic algo-

rithms. It must also support the real time exchange of keying material, bindings, and

IDs.

Efficiency

In group encryption, efficiency can be difficult to achieve. The communications vol-

ume is larger as group cryptographic data structures must be distributed to a larger

number of participants, resulting in an increase in messages needed to be sent. Group

distribution of these cryptographic data structures also adds more communication

overhead per message than user-to-user encryption. These problems are compounded

by the fact that whenever a new member joins or leaves an encryption group, new

keys may have to be distributed. While these problems may be not as important

on a wired high-bandwidth, low latency network, our group encryption mechanisms

must take into account low-bandwidth, high latency networks and implement efficient

group encryption schemes.

109

7.3.2 Secure Group Protocol

To satisfy the requirements for secure group messages, a secure group protocol has

three parts. The first part is a group encryption scheme for binding cryptographic IDs

to application IDs and performing end-to-end encryption to create secure messages.

The second part is a scheme for exchanging cryptographic information necessary to

accomplish encryption, and the third is a secure message format to send the data.

Group Encryption Schemes

A group encryption scheme encompasses methods which are used to pass encrypted

data in between entities and dynamically rekey users as encryption-group member-

ships change. A scheme is needed to provide group end-to-end security. This scheme

defines methods encryption groups use to rekey and the exact mechanisms and al-

gorithms by which encrypted data is passed. One sample group end-to-end security

scheme is S/MIME [47]. Another developed specifically for disadvantaged networks

by Lincoln Laboratory is GROK.

Bootstrapping Secure Group Communications

When a client enables group encryption in a chatroom, a separate protocol is needed

for exchanging information with other clients supporting group encryption in the

room. The client may need to exchange public keys, name-key bindings or other

information (methods used to distribute new keys to a group, supported encryp-

tion/signature algorithms, etc). Clients may automatically send this information

when entering a group, or may wait until it is requested by other members in the

encryption group. For XMPP, there is no specified method of sending this needed

authentication information, though the information may be packaged in any manner,

including CMS.

110

Secure Messaging Process and Format

In order for plugin software to encrypt a message to a group of users we propose a

protocol which uses a ge2e element to specify secure group communications. The

entire process is shown in Figure 7-1 and given as an example of a group message

created by OpenSSL and sent via an XMPP client. We detail the process and format

next.

Figure 7-1: XMPP group secure message sending process

First, the XMPP plugin encrypts the message using the encryption scheme of the

user’s choosing. Next the encrypted message is encoded in base-64 for text output to

be sent.

Text: Testing the encrypted message system.

=> < - - encrypted text plus any necessary headers -- >

=> < -- base -64 encoded encrypted text -- >

111

The encrypted and base-64 encoded payload is enclosed in text element in the ge2e

element whose attribute of encrypt tells what encryption scheme to use. This at-

tribute specifies the group encryption scheme used to handle the inside text. This

encompasses steps 1-3 in Figure 7-1. The message is passed from server to server in

steps 4 and 5 until it reaches the destination client. Clients decrypt a message by

first recognizing a ge2e element and then passing it to the group encryption process

specified by the encrypt attribute in the text element as shown in steps 6 and 7 in

Figure 7-1. The following listings show a sample XMPP chat protocol message with

our extension. In this example, we use the group encryption scheme GROK.

<message

From=alice@example.com/laptop

To=chat@conference.example.com

Type=groupchat >

<ge2e xmlns=urn:xmpp:tmp:ge2e >

<text encrypt=grok >

<![CDATA[---encrypted message ---]]>

</text >

</ge2e >

</message >

The server forwards the message to all group members using the multi-user chat

protocol [19] and ignores the ge2e element unless it’s a group member.

// Alice sends a ge2e message to the chatroom containing

// herself and Dave

<message

from=chat@conference.example.com/alice

to=bob@example.com/pda

type=groupchat >

<ge2e xmlns=urn:xmpp:tmp:ge2e >

<text encrypt=ge2e >

<![CDATA[---encrypted message ---]]>

</text >

</ge2e >

</message >

112

// The chatroom forwards the message to both users

// without dealing with the encrypted data

<message

from=chat@conference.example.com/alice

to=alice@example.com/laptop

type=groupchat

<ge2e xmlns=urn:xmpp:tmp:ge2e >

<text encrypt=grok >

<![CDATA[---encrypted message ---]]>

</text >

</ge2e >

</message >

// The chatroom forwards the message to Dave

<message

from=chat@conference.example.com/alice

to=dave@jabber.org/desktop

type=groupchat >

<ge2e xmlns=urn:xmpp:tmp:ge2e >

<text encrypt=groupEncrypt >

<![CDATA[---encrypted message ---]]>

</text >

</ge2e >

</message >

Listing 7.1: Sending a secure group message to a XMPP chatroom

In some cases, clients may not be able to decrypt a message received in the chat-

room. This may occur if the message is not encrypted to them. The response of the

receiving client depends on the group encryption scheme used in sending the message.

However, the recipient may choose to ignore the message or show a identifier saying

an indecipherable message was sent to the recipient. The recipient may also choose

to send a response to the sender.

113

7.3.3 Subset Addressing

We created another XMPP optimization to help efficiency and functionality of XMPP

in disadvantaged networks by reducing the amount of data needed to be sent. The ex-

tension allows servers to forward messages sent to a subset of users in a chatroom and

requires changes to how XMPP chat clients and servers handle group chat messages.

Problem Description

Subset addressing is the ability to send a message to a subset of the users in a

chatroom without having to create a new conversation with those users. In XMPP

multi-user chat the chat server normally forwards all messages to all room members,

but in some cases, messages are only intended for a subset of the room membership.

This means unneeded messages can be sent and bandwidth unnecessarily used. One

example of this problem can occur during secure group chat. When a secure group is

a subset of the room membership, secure group membership changes, and the group

encryption scheme needs to distribute a new key to the new secure group, messages

may need to be sent to a subset of users in the chatroom. Using the subset extension,

the server saves network bandwidth transmissions by eliminating rekey messages to

those not in the secure group in the chatroom and by not creating new conversations

for every user in the secure group membership.

Subset Addressing Usage

Subset addressing also supports other capabilities. For example, subset addresssing

can also function as a limited form of security as an ad-hoc secure group can be formed

by messaging to a specific subset. Finally, subset addressing could be an interesting

social tool which could be used to exclude friends from conversations without their

knowledge, pass secrets, and to avoid confusing others when messages arent meant

for them. With slow or disadvantaged networks, and encryption, a user can use

subset addressing to send cryptographic information to only the subset of users in a

chatroom that need that data, thus eliminating the waste of copying a message to

114

users who already have the information.

Sending a Subset-Addressed Message

In order to send messages to a subset of chatroom membership, a client includes

a subset attribute in the XMPP message element. The subset attribute lists user

nicknames delimited by the forward-slash symbol (/). If the list has no tilde symbol

(˜) in front, then it specifies the subset of the members to whom the message should be

delivered; otherwise, it describes the members that should be excluded from receiving

the message.

<message from=’alice@example.com ’ to=’test@chat.example.com ’

type=’groupchat subset=alice/bob/carol >

<html ><body > Hello subset </body ></html >

</message >

Listing 7.2: Test chatroom subset message from Alice

Listing 7.2 shows a message that Alice wants to send to Alice, Bob, and Carol,

but not Dave. The server test@chat.example.com parses the chat subset-addressed

message and copies it to Alice, Bob, and Carol. The subset attribute is dropped and

the original message is also dropped. The resulting messages shown in Listing 7.3

should look like normal messages from the Alice in the chatroom.

Example 1 cont:

<message from=’test@chat.example.com/alice ’

to=’alice@example.com/desktop ’ type=’groupchat ’>

<body >Hello subset </body >

</message >

<message from=’test@chat.example.com/alice ’

to=’bob@example.com/desktop ’ type=’groupchat ’>

<body >Hello subset </body >

</message >

115

<message from=’test@chat.example.com/alice ’

to=’carol@example.com/desktop ’ type=’groupchat ’>

<body >Hello subset </body >

</message >

Listing 7.3: Resulting message sent to chatroom

A user can also send to a subset of people where the subset excludes certain nicknames.

Listing 7.4 shows an example where Alice sends a message to test@chat.example.com

now specifying to exclude Dave.

<message from=’alice@example.com ’ to=’test@chat.example.com ’

type=’groupchat subset =~dave >

<html ><body > Hello subset example 2</body ></html >

</message >

Listing 7.4: Alice excluding Dave

The server would send the same copies of the message to the same users as in Listing

7.2. The exclusion list is more efficient to represent when the room membership is

greater than half the total members. The inclusion subset representation is more

efficient when the subset is less than half the room membership. The server ignores

any invalid subset names and any users who become members after a sender transmits

an exclusion list, but before a server parses a message, will receive the message.

Figure 7-2 shows how enabling subset addressing can help reduce the amount of

data sent on XMPP. Normal XMPP protocol in a chatroom creates a message for

all participants in the chatroom even when the message is intended for a subset of

the people in the chatroom. Thus, a message costs (n + 1) ∗m units, where n is the

number of people in the chatroom and m is the message size. However, with subset

addressing, a message costs (k + 1) ∗m where k is the size of the subset. Thus, we

save (k + 1)/(n + 1) units, which obviously depends on the subset size.

The other method of sending to this subset would be to create separate conver-

sations with each member. However, creating a new conversation requires has more

message overhead than the user’s name in the subset listing.

116

Figure 7-2: Message savings due to subset addressing

7.4 Implementation

We described two ways of optimizing XMPP to use group secure communications,

the use of ge2e elements to specify when group secure messages are sent and the use

of subset addressing.

7.4.1 Platform

We implemented our XMPP protocol extensions in the Pidgin chat client [10] and

the Openfire [9] chat server. We chose Pidgin and Openfire because previous work in

our research group built security extensions into the same software, the code for both

of these programs is available through open source projects, and these clients both

use the XMPP protocol to pass messages.

117

7.4.2 Group Secure Message Plugins

Pidgin implements a robust plugin interface that enables developers to extend func-

tionality. The XMPP protocol is itself a type of plugin to the the libpurple message

passing library. libpurple is responsible for the low level implementation of gather-

ing user input and sending messages on the network while the XMPP plugin modifies

these messages to wrap its XMPP elements around user input. We use the XMPP

plugin interface because it allows Pidgin to benefit from any group security libraries

that can encrypt chat data sent in XMPP.

Signals

Pidgin’s libpurple library interface allows for the sending of signals and attach-

ing handlers to signals, which is an implementation of events and event handlers

paradigm. We define an XMPP-specific signal that group secure plugins can connect

a handler to in order to encrypt communications.

purple_signal_register(plugin , "jabber -ge2e -encrypt",

purple_value_new(PURPLE_TYPE_BOOLEAN), 5,

purple_value_new(PURPLE_TYPE_SUBTYPE ,

PURPLE_SUBTYPE_CONVERSATION),

purple_value_new_outgoing(PURPLE_TYPE_STRING),

purple_value_new_outgoing(PURPLE_TYPE_STRING),

purple_value_new_outgoing(PURPLE_TYPE_STRING),

purple_value_new_outgoing(PURPLE_TYPE_ENUM));

purple_signal_register(plugin , "jabber -ge2e -decrypt",

purple_value_new(PURPLE_TYPE_BOOLEAN), 4,

purple_value_new(PURPLE_TYPE_SUBTYPE ,

PURPLE_SUBTYPE_ACCOUNT),

purple_value_new(PURPLE_TYPE_STRING),

purple_value_new(PURPLE_TYPE_STRING),

purple_value_new_outgoing(PURPLE_TYPE_STRING));

Listing 7.5: Definition of the XMPP ge2e signal

118

The Listing 7.5 shows code to register a signal called jabber-grok-encrypt and jabber-

grok-decrypt with pidgin and associated with the XMPP protocol plugin. The signal

takes arguments which contain pointers to the text data being sent in Pidgin as well

as the attributes that the ge2e message should have. This is defined in libpur-

ple/protocol/jabber/libxmpp.c in the pidgin source. The encryption plugin

can then use purple_signal_connect to connect a handler function to these signals

which takes the input text data and encrypts or decrypts it before returning.

static gboolean

grok_encrypt_cb (PurpleConversation *conv ,char **encrypt ,

char **msg , char **u_msg , unsigned int *type , void *data)

{

assert (u_msg); // Unencrypted message

assert (conv); // The current conversation

assert (msg); // Text being sent

assert (data) // Memory structure for group

encryption

char *e;

PurpleAccount *account;

account = purple_conversation_get_account(conv);

assert (account);

// Use group encryption plugin to encrypt msg

// Store unencrypted messages in u_msg

if (send_msg (conv , msg , u_msg , (grok_i_t **) data ,

"chat") < 0)

{

if (*msg) {

free (*msg);

*msg = 0;

}

if (* u_msg){

free (* u_msg);

*u_msg = 0;

}

119

return FALSE;

}

// Sets the encrypt attribute for the ge2e element to

’grok ’

// and the type of data to GE2E_TEXT

g_free (* encrypt);

e = "grok";

*encrypt = e;

*type = 0x1; // GE2E_TEXT = 1 DATA = 2

return TRUE;

}

Listing 7.6: Encryption signal handler

The encryption plugin callback shown in Listing 7.6 is connected in the implementa-

tion at pidgin/plugins/grok/signal handlers.c. It changes the message sent

to the signal and returns. Finally, we show in Listing 7.7 where the XMPP proto-

col calls the signal to potentially encrypt the sent chat data before wrapping XMPP

elements around the message and sending it on the network.

...In function: jabber_message_send_chat

// Emit the signal: emsg changed to encrypted text

// if signal is connected

jm->encryptOn = GPOINTER_TO_INT(

purple_signal_emit_return_1(plugin ,"jabber -ge2e -encrypt",

chat ->conv ,&encrypt ,&emsg ,&u_msg ,&jm ->g_type)

);

jm->g_encrypt = g_strdup(encrypt);

// If the message was encrypted and stored in emsg

// then wrap the emsg and send it.

if(jm ->encryptOn == FALSE || !strcmp(emsg ,msg))

{

if(emsg == NULL)

120

return 0;

buf = g_strdup_printf ("<html

xmlns=’http :// jabber.org/protocol/xhtml -im’>

<body xmlns=’http :// www.w3.org /1999/ xhtml ’>

s</body ></html >", emsg);

}

purple_markup_html_to_xhtml(buf , &jm->xhtml , &jm->body);

// Send the message adding XMPP elements then free it

jabber_message_send(jm);

jabber_message_free(jm);

Listing 7.7: XMPP Protocol emitting the signal to use group secure communications

Upon receiving the data, the process is reversed as the XMPP elements are parsed

and a signal is emitted to decrypt the data. The group secure communications plugin

catches the signal and decrypts to create plaintext. The text is then passed to the

functions that display data on the client’s screen. The message encryption process is

detailed in Figure 7-3.

Figure 7-3: Detailing the implementation of the ge2e element in Pidgin

121

7.4.3 Subset Implementation

Enabling subsets requires changes on both Pidgin, the XMPP client, and the XMPP

Server, which we chose to be an Openfire server [9]. On the client, we use a command

interface. We defined an XMPP command for XMPP subsets which fires if the user

chooses to send to a subset within the chatroom. As a reference implementation,

we implemented this like a chatroom command. If the user types /subset in their

chatroom window followed by the nicknames of the people to send the message to,

alice/bob/carol, then the message, Hello to only the subset, is sent to only

the subset of users. The Listing 7.8 shows the subset command being registered for

the XMPP protocol.

purple_cmd_register (" subset", "ws", PURPLE_CMD_P_PRPL ,

PURPLE_CMD_FLAG_CHAT | PURPLE_CMD_FLAG_PRPL_ONLY ,

"prpl -jabber", jabber_cmd_chat_subset_msg ,

_(" subset <subset list> <message>

: Send a message to a subset of the room.

Subset list is a list of nicknames to

send to separated by ’/’ and preceded by ’~’

if it is a list of users to exclude ."), NULL);

Listing 7.8: Registering a command for subsets in XMPP

This command signals the signal handler, jabber cmd chat subset msg when-

ever the string /subset is typed into Pidgin while using XMPP. This signal handler

is detailed in Listing 7.9. Both these listings are in libpurple/protocols/jab-

ber/jabber.c

static PurpleCmdRet jabber_cmd_chat_subset_msg

(PurpleConversation *conv , const char *cmd ,

char **args , char **error , void *data)

{

JabberChat *chat = jabber_chat_find_by_conv(conv);

if (!chat)

return PURPLE_CMD_RET_FAILED;

122

PurpleConnection *gc = purple_conversation_get_gc(conv);

JabberStream *js = gc ->proto_data;

// Must have two arguments

if(args [0] == NULL || args [1] == NULL)

return PURPLE_CMD_RET_FAILED;

// The subset of user is the first argument

// and stored in js ->subset

js->subset = args [0];

// The message is stored in args [1] and sent to

// the chatroom.

jabber_message_send_chat(gc , chat ->id , args[1], 0);

js->subset = NULL;

return PURPLE_CMD_RET_OK;

}

Listing 7.9: Subset command handler in XMPP

We modified XMPP to add the subset attribute to a message when the subset

command was given. The modified message is then sent to the Openfire XMPP

server, which parses the message in the call to processMessage. If there is a subset

of users to send to, processMessage in Listing 7.11 sends the message to the subset

of users specified by the subset attribute. Then in Listing 7.10 the server throws a

PacketRejectedException in interceptPacket to stop the message from being routed to

any other users connected to the chatroom. This protocol is located in the MUC-

SubsetPlugin.java file.

public void interceptPacket(Packet packet , Session session ,

boolean read ,

boolean processed) throws PacketRejectedException

{

// Create a copy of the packet

Packet original = packet.createCopy ();

123

boolean isMUCSubset = false;

if(m_pluginEnabled){

if (packet instanceof Message){

// process the message return

// true if it is a subset message

isMUCSubset =

processMessage ((Message)packet , read);

}

// If not a subset forward as usual

if(! isMUCSubset){

packet = original;

}

// Drop the packet if it is a subset message

else{

throw new PacketRejectedException (" message

dropped ");

}

}

}

Listing 7.10: Subset message packet handling on the Openfire server

private boolean processMessage(Message message ,boolean read)

{

... declare variables

from = message.getFrom ();

to = message.getTo();

... initialize variables ...

// Get the subset elements

subset = message.getElement ().attributeValue (" subset ");

// determine if its an exclude subset

if(subset.charAt (0) == ’~’)

{

124

exclude = true;

subset = subset.substring (1);

}

room = m_muc.getChatRoom(to.getNode ());

st = subset.split ("/");

if ((st!=null) && room!=null)

{

processed = true;

// Iterate through all room occupants

for(int i = 0;i<st.length;i++) {

m_temp = message.createCopy ();

occupants = room.getOccupants ();

for(MUCRole occupant : occupants){

if(occupant.getNickname ().equals(st[i]))

{

inroomto =

occupant.getUserAddress ();

break;

}

// send to everyone in the subset

if(inroomto != null){

m_temp.setTo(inroomto);

m_temp.setFrom(new

JID(node ,domain ,resource));

messageRouter.route(m_temp);

inroomto = null;

}

}

}

}

return processed;

}

Listing 7.11: Processing subset messages on Openfire

125

Openfire uses a plugin mechanism which allowed us to implement these changes on

top of the existing XMPP code for Openfire. If multiple plugins catch the signal,

the plugins are executed on the messages in order of priority, which is defined when

registering the plugin. If the message is thrown away in this subset plugin, then it

will not be accessible for later plugins. Plugins always run in a priority lower than the

native Openfire code, however. Figure 7-4 shows how a subset command message from

Pidgin uses the handler function to attach the subset attribute. The Openfire server

then uses that attribute to route the message to the appropriate user membership.

Figure 7-4: Subset message creation and routing on XMPP client and server

7.5 Evaluation and Conclusions

These XMPP chat messages were deployed on a military exercise called CAPSTONE

II [6]. The exercise contained a disadvantaged network with low-bandwidth, high-

latency links. Each site had users connected to a geographically local server and

126

servers connected to each other over the disadvantaged network. Approximately 30

users exercised the chat system and sent approximately 2500 messages. The ge2e ele-

ments were used to encapsulate group secure communications. Unfortunately, subsets

were not used during the exercise because the implementation was not complete by

the exercise start date, but functionally worked in isolated testing where users sent

subset messages to a local server and a local chatroom.

We implemented a group security ge2e element and associated jabber-ge2e-encrypt

and jabber-ge2e-decrypt signals to allow for group encryption schemes to interface

with XMPP. This creates an extensible mechanism for using secure group communi-

cations on any XMPP supported application.

We also created an optimization for XMPP and multi-user chat to eliminate re-

dundant message transmission. The implementation on the XMPP client and server

may reduce XMPP overhead for secure group communications in situations where

large messages need to be sent to a subset of the membership of a chatroom.

127

128

Chapter 8

Conclusions

In this thesis, we investigated methods for optimizing and implementing standardized

cryptographic message formats for the use in disadvantaged networks. Both methods,

ZLIB-compression with a static, preplaced dictionary and CMS Lite, reduce message-

size overhead of CMS messages. The former uses generic data compression and is easy

to implement. CMS Lite implements domain-specific, hand-crafted compression, and

as such can potentially outperform the generic approach; on the other hand, imple-

menting CMS Lite is incomparably harder. A promising middle-ground for future

research is to combine the two approaches: process CMS messages to consolidate all

the formatting and configuration parts into one section and all the random, ciphertext

parts into the other, and run zlib with a preplaced dictionary over the former part;

then on the deflation side, reverse the process.

8.1 What I Learned

While working on this thesis project, I learned more about C programming and the

use of GNU tools such as gdb and Autotools. I examined the Pidgin and OpenSSL

source code and developed extensions using the CMS and ASN.1 APIs in OpenSSL

while creating plugins for Pidgin. I developed better coding practices and became

proficient in the vim and ctags text editor tools for programming in Linux. Finally,

I freshened up my knowledge of LATEX by writing this thesis.

129

130

Appendix A

CMS ASN.1 Library Listing

ASN1_CHOICE(CMS_LiteData) = {
ASN1_IMP(CMS_LiteData , params.signedParams ,

CMS_Signed_params , 0),
ASN1_IMP(CMS_LiteData , params.envelopedParams ,

CMS_Enveloped_params , 1),
ASN1_IMP(CMS_LiteData , params.digestedParams ,

CMS_Digested_params , 2),
ASN1_IMP(CMS_LiteData , params.encryptedParams ,

CMS_Encrypted_params , 3),
ASN1_IMP(CMS_LiteData , params.authenticatedParams ,
CMS_Authenticated_params , 4),

ASN1_IMP(CMS_LiteData , params.compressedParams ,
CMS_Compressed_params ,5)

} ASN1_CHOICE_END(CMS_LiteData)

Listing A.1: CMS LiteData

131

ASN1_NDEF_SEQUENCE(CMS_Signed_params) = {
ASN1_SIMPLE(CMS_Signed_params , version , LONG),
ASN1_SIMPLE(CMS_Signed_params , contentType , LONG),
ASN1_SIMPLE(CMS_Signed_params , eContent ,

ASN1_OCTET_STRING),
ASN1_SET_OF(CMS_Signed_params , signerInfos ,

CMS_SignerInfo_params)
} ASN1_NDEF_SEQUENCE_END(CMS_Signed_params)

ASN1_SEQUENCE(CMS_SignerInfo_params) = {
ASN1_SIMPLE(CMS_SignerInfo_params , version , LONG),
ASN1_SIMPLE(CMS_SignerInfo_params , sidHash , LONG),
ASN1_SIMPLE(CMS_SignerInfo_params , type , LONG),
ASN1_SIMPLE(CMS_SignerInfo_params , parameter , LONG),
ASN1_IMP_SET_OF_OPT(CMS_SignerInfo_params , signedAttrs ,

X509_ATTRIBUTE ,
0),

ASN1_SIMPLE(CMS_SignerInfo_params , signature ,
ASN1_OCTET_STRING)

} ASN1_SEQUENCE_END(CMS_SignerInfo_params)

Listing A.2: CMS Signed params : SignedData

132

ASN1_NDEF_SEQUENCE(CMS_Enveloped_params) = {
ASN1_SIMPLE(CMS_Enveloped_params , version , LONG),
ASN1_SET_OF(CMS_Enveloped_params , recipientInfos ,

CMS_Recipient_params),
ASN1_SIMPLE(CMS_Enveloped_params , parameter , LONG),
ASN1_SIMPLE(CMS_Enveloped_params , encryptAlg , X509_ALGOR),
ASN1_IMP_OPT(CMS_Enveloped_params , eContent ,

ASN1_OCTET_STRING_NDEF , 0),
} ASN1_NDEF_SEQUENCE_END(CMS_Enveloped_params)

ASN1_CHOICE(CMS_Recipient_params) = {
ASN1_SIMPLE(CMS_Recipient_params , d.ktp ,

CMS_KeyTransParams),
ASN1_IMP(CMS_Recipient_params , d.kap , CMS_KeyAgreeParams ,

1),
ASN1_IMP(CMS_Recipient_params , d.kekp , CMS_KEKParams , 2),
ASN1_IMP(CMS_Recipient_params , d.pwdp , CMS_PasswordParams ,

3)
} ASN1_CHOICE_END(CMS_Recipient_params)

ASN1_SEQUENCE(CMS_KeyTransParams) = {
ASN1_SIMPLE(CMS_KeyTransParams , version , LONG),
ASN1_SIMPLE(CMS_KeyTransParams , type , LONG),
ASN1_SIMPLE(CMS_KeyTransParams , sidHash , LONG),
ASN1_SIMPLE(CMS_KeyTransParams , encryptedKey ,

ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_KeyTransParams)

ASN1_SEQUENCE(CMS_KeyAgreeParams) = {
ASN1_SIMPLE(CMS_KeyAgreeParams , version , LONG),
ASN1_EXP(CMS_KeyAgreeParams , originator ,

CMS_OriginatorIdentifierOrKey , 0),
ASN1_EXP_OPT(CMS_KeyAgreeParams , ukm , ASN1_OCTET_STRING ,

1),
ASN1_SIMPLE(CMS_KeyAgreeParams , keyEncryptionAlgorithm ,

ASN1_INTEGER),
ASN1_SEQUENCE_OF(CMS_KeyAgreeParams ,

recipientEncryptedKeys ,
CMS_RecipientEncryptedKey)
} ASN1_SEQUENCE_END(CMS_KeyAgreeParams)

Listing A.3: CMS Enveloped params : EnvelopedData

133

ASN1_SEQUENCE(CMS_KEKParams) = {
ASN1_SIMPLE(CMS_KEKParams , version , LONG),
ASN1_SIMPLE(CMS_KEKParams , kekid , CMS_KEKIdentifier),
ASN1_SIMPLE(CMS_KEKParams , keyEncryptionAlgorithm ,

ASN1_INTEGER),
ASN1_SIMPLE(CMS_KEKParams , encryptedKey ,

ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_KEKParams)

ASN1_SEQUENCE(CMS_PasswordParams) = {
ASN1_SIMPLE(CMS_PasswordParams , version , LONG),
ASN1_SIMPLE(CMS_PasswordParams , keyParam , LONG),
ASN1_SIMPLE(CMS_PasswordParams , encryptedKey ,

ASN1_OCTET_STRING)
} ASN1_SEQUENCE_END(CMS_PasswordParams)

Listing A.4: EnvelopedData continued...

ASN1_NDEF_SEQUENCE(CMS_Digested_params) = {
ASN1_SIMPLE(CMS_Digested_params , version , LONG),
ASN1_SIMPLE(CMS_Digested_params , parameter , LONG),
ASN1_SIMPLE(CMS_Digested_params , eContent ,

ASN1_OCTET_STRING),
ASN1_SIMPLE(CMS_Digested_params , digest ,

ASN1_OCTET_STRING)
} ASN1_NDEF_SEQUENCE_END(CMS_Digested_params)

Listing A.5: CMS Digested params : DigestedData

ASN1_NDEF_SEQUENCE(CMS_Compressed_params) = {
ASN1_SIMPLE(CMS_Compressed_params , version , LONG),
ASN1_SIMPLE(CMS_Compressed_params , parameter , LONG),
ASN1_SIMPLE(CMS_Compressed_params , eContent ,

ASN1_OCTET_STRING),
ASN1_OPT(CMS_Compressed_params , dictionaryDigest ,

ASN1_OCTET_STRING)
} ASN1_NDEF_SEQUENCE_END(CMS_Compressed_params)

Listing A.6: CMS Compressed params : CompressedData

ASN1_NDEF_SEQUENCE(CMS_Encrypted_params) = {
ASN1_SIMPLE(CMS_Encrypted_params , version , LONG),
ASN1_SIMPLE(CMS_Encrypted_params , contentType , LONG),
ASN1_SIMPLE(CMS_Encrypted_params , encryptAlg , X509_ALGOR),
ASN1_SIMPLE(CMS_Encrypted_params , eContent ,

ASN1_OCTET_STRING)
} ASN1_NDEF_SEQUENCE_END(CMS_Encrypted_params)

Listing A.7: CMS Encrypted params : EncryptedData

134

Appendix B

CMS Optimizations Data

Test SignedData Size EnvelopedData Size

Original CMS Size 455.8 463
Worst Case Conditions (ZLIB no dictionary) 427.6 463
ZLIB Best Dictionary 341.2 341.4
Best Case Conditions (ZLIB repeated) 316.8 314.5
CMS Lite 410 358

Table B.1: Summary results of all optimizations on CMS

Dictionary Signed Enveloped Digested Compressed Encrypted

Original Message 526.8 455.8 63 82 69
CMS Shortened Strings 355.8 380.6 44 65 55
CMS Full Structures 356.6 358 49 39 38
Strings + Certs 336 361.2 42 64 56
Full + Certs 341.2 341.4 38 53 38
Strings + SignerIDs + Certs 352.4 376.8 47 67 59
Full + SignerIDs + Certs 361.8 360.2 40 55 40

Table B.2: Dictionary ZLIB compression results

135

Dictionary Signed Enveloped Digested Compressed Encrypted

Original Message 270.8 199.8 43 82 69
CMS Shortened Strings 99.8 124.6 24 65 55
CMS Full Structures 100.6 102 29 38 39
Strings + Certs 80 105.2 22 64 56
Full + Certs 85.2 85.4 18 53 38
Strings + SignerIDs + Certs 96.4 120.8 27 67 59
Full + SignerIDs + Certs 105.8 104.2 20 55 40

Table B.3: Dictionary ZLIB overhead compression results

CMS Structure Original CMS CMS Lite

SignedData 526.8 410
EnvelopedData 455.8 358
DigestedData 63 34
CompressedData 82 72
EncryptedData 69 50

Table B.4: CMS Lite optimization results

CMS Structure Original CMS CMS Lite

SignedData 270.8 154
EnvelopedData 199.8 102
DigestedData 43 14
CompressedData 82 72
EncryptedData 69 50

Table B.5: CMS Lite overhead optimization results

136

Bibliography

[1] Cryptlib Security Software Development Toolkit. http://www.cryptlib.com/.

[2] Exuberant Ctags. http://ctags.sourceforge.net/.

[3] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/.

[4] Internet Explorer. http://www.microsoft.com/windows/

internet-explorer/default.aspx.

[5] Kile - An Integrated LaTeX Environment. http://kile.sourceforge.net/.

[6] MILSTAR. http://www.lockheedmartin.com/products/Milstar/index.

html.

[7] Mozilla Firefox. http://www.mozilla.com/en-US/firefox/personal.html/.

[8] Network Centric Operations. http://en.wikipedia.org/wiki/

Network-centric_warfare.

[9] Openfire. http://www.igniterealtime.org/projects/openfire/index.jsp.

[10] Pidgin, the universal chat client. http://www.pidgin.im/.

[11] The Apache Software Foundation. http://www.apache.org/.

[12] The GNU Operating System. http://www.gnu.org/.

[13] The OpenSSL Project. http://www.openssl.org/.

[14] Vim the Editor. http://www.vim.org/.

[15] VMware Workstation. http://www.vmware.com/products/ws/.

[16] Web Services Architecture. http://www.w3.org/TR/2004/

NOTE-ws-arch-20040211/.

[17] WSS4J. http://ws.apache.org/wss4j/.

[18] XEP-001: XMPP Extensions. http://xmpp.org/extensions/xep-0001.html.

[19] XEP-0045: Multi-User Chat. http://www.xmpp.org/extensions/xep-0045.

html.

137

[20] Information Technology - Abstract Syntax Notation One (ASN.1) ASN.1 encod-
ing rules: XML Encoding Rules. Recommendation X.693, December 2001.

[21] Information Technology - Abstract Syntax Notation One (ASN.1) ASN.1 encod-
ing rules. Recommendation X.680-X.695, July 2002.

[22] Information Technology - Abstract Syntax Notation One (ASN.1) ASN.1 encod-
ing rules: Distinguished Encoding Rules. Recommendation X.690, July 2002.

[23] A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker. Web Services Security:
SOAP Message Security 1.1. OASIS, February 2006.

[24] Adler, M. zlib 1.1.4 Manual. http://zlib.net/manual.html.

[25] S. Bellovin and R. Housley. Guidelines for Cryptographic Key Management.
RFC 4107 (Best Current Practice), June 2005.

[26] S. Bradner. The Internet Standards Process – Revision 3. RFC 2026 (Best
Current Practice), October 1996. Updated by RFCs 3667, 3668, 3932, 3979,
3978, 5378.

[27] S. Bradner. The Internet Standards Process – Revision 3. RFC 2026 (Best
Current Practice), October 1996. Updated by RFCs 3667, 3668, 3932, 3979,
3978, 5378.

[28] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (Informational), May 1996.

[29] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification version
3.3. RFC 1950 (Informational), May 1996.

[30] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

[32] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045 (Draft Standard),
November 1996. Updated by RFCs 2184, 2231, 5335.

[33] Greg Goth. Key Management Standards Hit the Fast Track. IEEE Distributed
Systems Online, 8(9), 2007.

[34] R. Housley. Cryptographic Message Syntax (CMS). RFC 3369 (Proposed Stan-
dard), August 2002. Obsoleted by RFC 3852.

[35] R. Housley. Cryptographic Message Syntax (CMS). RFC 3852 (Proposed Stan-
dard), July 2004. Updated by RFCs 4853, 5083.

138

[36] R. Housley. Using Cryptographic Message Syntax (CMS) to Protect Firmware
Packages. RFC 4108 (Proposed Standard), August 2005.

[37] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infras-
tructure Certificate and CRL Profile, 1999.

[38] Huffman, D. A. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[39] B. Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315
(Informational), March 1998.

[40] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard), December 2005.

[41] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),
April 2001. Obsoleted by RFC 5321, updated by RFC 5336.

[42] J. Linn. Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. RFC 1421 (Historic), February 1993.

[43] M. Myers, X. Liu, J. Schaad, and J. Weinstein. Certificate Management Messages
over CMS. RFC 2797 (Proposed Standard), April 2000. Obsoleted by RFC 5272.

[44] National Institute of Standards and Technology. FIPS PUB 197: Advanced
Encryption Standard (AES). National Institute for Standards and Technology,
Gaithersburg, MD, USA, November 2001.

[45] National Institute of Standards and Technology. FIPS PUB 180-2: Advanced
Encryption Standard (AES). National Institute for Standards and Technology,
Gaithersburg, MD, USA, August 2002.

[46] R. Perlman. An Overview of PKI Trust Models. IEEE Networks, 13(6):38–43,
1999.

[47] B. Ramsdell. S/MIME Version 3 Message Specification. RFC 2633 (Proposed
Standard), June 1999. Obsoleted by RFC 3851.

[48] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational),
April 1992.

[49] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[50] S. Cantor, J. Kemp, R. Philpott, E. Maler. Security Assertion Markup Language
v2.0. OASIS, March 2005.

[51] P. Saint-Andre. End-to-End Signing and Object Encryption for the Extensible
Messaging and Presence Protocol (XMPP). RFC 3923 (Proposed Standard),
October 2004.

139

[52] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core,
October 2004. http://xmpp.org/rfcs/rfc3920.html.

[53] J. Schaad and M. Myers. Certificate Management over CMS (CMC). RFC 5272
(Proposed Standard), June 2008.

[54] J. Schaad and M. Myers. Certificate Management over CMS (CMC). RFC 5272
(Proposed Standard), June 2008.

[55] J. Schaad and M. Myers. Certificate Management over CMS (CMC): Transport
Protocols. RFC 5273 (Proposed Standard), June 2008.

[56] S. Turner. CMS Symmetric Key Management and Distribution. RFC 5275
(Proposed Standard), June 2008.

[57] Ziv, J. and Lempel, A. A Universal Algorithm for Sequential Data Compression.
Information Theory, IEEE Transactions on Information Theory, 23(3):337–343,
May 1977.

140

